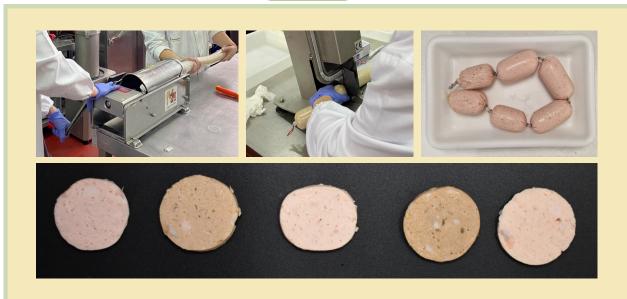


Impact of Sodium and Starch Reduction on the Mineral Profile and Bioaccessibility of *Mortadella* Enriched with *Agaricus bisporus* and *Pleurotus ostreatus*By-Products

P. Bermúdez-Gómez^{1,2}, Nuria Muñoz-Tebar², Raquel Lucas-González², M. Viuda-Martos², J. Fernández-López² and M. Pérez-Clavijo¹

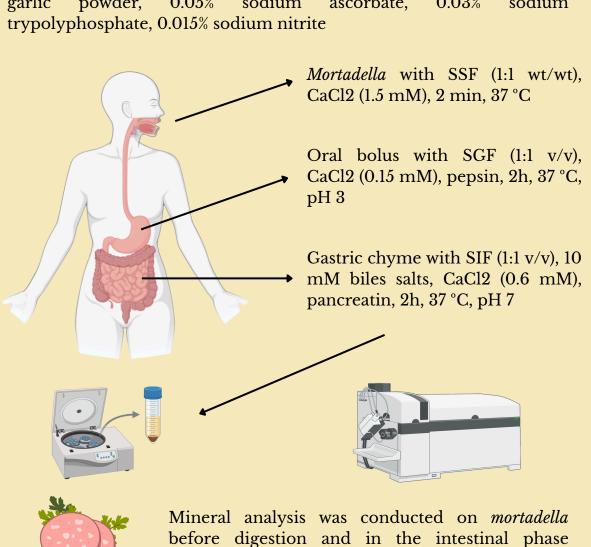

Affiliation 1; Technological Centre for Mushroom Research in La Rioja (CTICH), Autol, Spain.

Affiliation 2; IPOA Research Group, Institute for Agri-Food and Agri-Environmental Research and Innovation, Miguel Hernández University, Elche, Spain. Corresponding author: patricia.bermudez@goumh.umh.es

Introduction

Stems of Agaricus bisporus (AB) and Pleurotus ostreatus (PO) represent around 20% of total mushroom production yield. Stems have a high content of umami compounds. Considering the public health concerns associated with excessive sodium intake and the technological challenges of salt reduction in meat systems, these by-products have gained attention as natural flavor enhancers. This study investigates the application of edible flours obtained by dehydrating the stems of Agaricus bisporus (ABSF) and Pleurotus ostreatus (POSF) as partial replacements for sodium and potato starch in mortadella reformulation.

Methodology

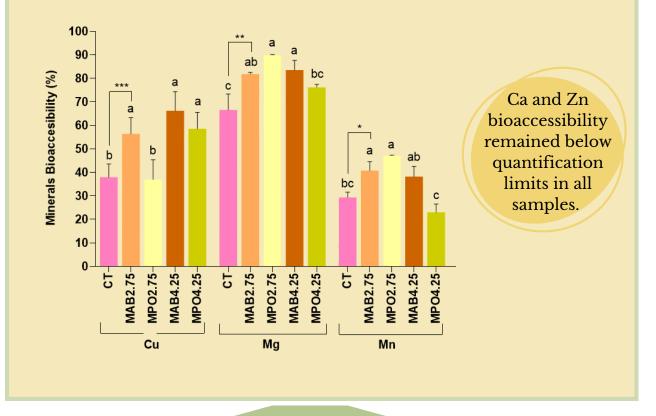


• Control: Traditional recipe*

5 prototypes

- 50% sodium (salt and sodium trypolyphosphate) and potato starch substitution by the addition of 2.75% of ABSF or POSF
- 50 % sodium (salt and sodium trypolyphosphate)
 substitution and 100% replacement of potato starch
 by the addition of 4.25% of ABSF or POSF

*Traditional recipe: 65% lean meat, 25% pork dewlap, 10% pork backfat, 2.5% salt, 12.5% ice, 3% potato starch, 0.1% pepper, 0.05% nutmeg, 0.2 garlic powder, 0.05% sodium ascorbate, 0.03% sodium trypolyphosphate, 0.015% sodium nitrite


samples using ICP-MS

Results

Table 1. The minerals profile of reformulated mortadella by the addition of *Agaricus bisporus* stem flour (ABSF) and *Pleurotus ostreatus* stem flour (POSF).

Mineral	Control	MAB2.75	MPO2.75	MAB4.25	MPO4.25
Calcium	13.22c	19.61b	7.14d	37.71a	8.98d
	±0.77	±0.89	±0.10	±0.89	±0.25
Cupper	31.57d	70.79b	50.07c	90.46a	57.88c
	±0.73	±3.08	±2.74	±2.47	±0.01
Magnesium	22.32a	23.22a	21.19a	22.81a	22.32a
	±0.47	±0.84	±0.24	±0.31	±0.26
Manganese	40.01d	54.09b	47.40c	64.93a	50.93bc
	±2.01	±1.11	±1.30	±1.01	±0.24
Sodium	884.97a	444.03b	421.39b	427.39b	438.16b
	±3.05	±0.22	±0.32	±3.26	±0.11
Zinc	1.52a ±0.04	1.24b ±0.06	1.13b ±0.01	1.47a ±0.06	1.05b ±0.04

Figure 1. Bioaccesibility of minerals of the reformulated mortadella by the addition of *Agaricus bisporus* stem flour (ABSF) and *Pleurotus ostreatus* stem flour (POSF).

Conclusion

These results highlight the promising role of mushroom stem flours as sustainable ingredients for the reformulation of processed meat products. Their incorporation into mortadella for sodium reduction not only lowered its concentration but also enhanced the bioaccessibility of other essential minerals.

