Relationships Between Physicochemical Properties and Image Texture Features of Yellow Sweet Bell Pepper after Selected Periods of Spontaneous Lacto-fermentation

Ewa Ropelewska, Justyna Szwejda-Grzybowska, Anna Wrzodak
Fruit and Vegetable Storage and Processing Department, The National Institute of Horticultural Research,
Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland

INTRODUCTION & AIM

Lacto-fermentation is an effective method for preserving sweet bell peppers after harvest. In addition to extending their shelf life, this process enhances the peppers with beneficial health properties.

The objectives of this study were as follows:

- (1) To determine the <u>physicochemical properties</u>, such as pH, total soluble solids, sugars, L-ascorbic acid, and carotenoids, and <u>2172 texture parameters</u> from images in color channels *R*, *G*, *B*, *S*, *U*, *V*, *X*, *Y*, *Z*, *L*, *a*, and *b* of yellow sweet bell pepper 'Yellow California' before lactofermentation and after 7, 14, 28, and 56 days of the process.
- (2) To determine the <u>linear correlations</u> between physicochemical properties and image texture features.
- (3) To set <u>linear regression equations</u> for estimating the changes in the physicochemical properties of yellow sweet bell pepper during lacto-fermentation based on image parameters.

METHOD

Spontaneous lacto-fermentation: yellow pepper pieces, allspice, black pepper, bay leaves, mustard seeds, 3.5% brine. **Lacto-fermentation periods**: 7, 14, 28, and 56 days.

Image acquisition: Epson Perfection flatbed scanner (Epson,

Suwa, Nagano, Japan).

Image processing: MaZda 4.7 software (Łódź University of Technology, Institute of Electronics, Łódź, Poland)

Technology, Institute of Electronics, Łódź, Poland) (Szczypiński et al., 2007; Szczypiński et al., 2009; Strzelecki et al., 2013).

Physicochemical properties:

<u>pH</u> – titrator (SI Analytics, TitroLine7000, Weilheim, Germany), <u>total soluble solids</u> – refractometer RE50 (Mettler Toledo, Greifensee, Switzerland),

<u>sugar content</u> – HPLC (high-performance liquid chromatography) (Agilent Technologies, Morges, Switzerland), <u>L-ascorbic acid content</u> – HPLC (Agilent Technologies, Morges, Switzerland),

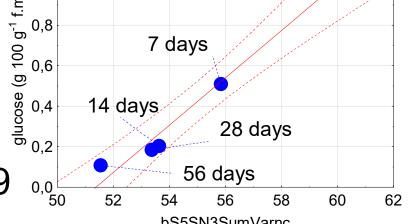
<u>carotenoid content</u> – HPLC (Agilent Technologies, Morges, Switzerland).

Correlation and regression: STATISTICA 13.3 (StatSoft Polska Sp. z o.o., Kraków, Poland; TIBCO Software Inc., Palo Alto, CA, USA).

RESULTS & DISCUSSION

The highest correlation coefficients (R) were as follows:

0.99: glucose and image texture bS5SN3SumVarnc


pH and VS5SV1Correlat

-0.99: fructose and RHPerc99

total sugars and RHPerc99

L-ascorbic acid and RHPerc99

total soluble solids and RHPerc99

0 days

0.98: ß-carotene and US5SH1Entropy -0.98: ß-carotene and aHMaxm10

Regression equations: allowed for predicting physicochemical parameters based on image textures with high coefficients of determination (R²) of up to 0.98.

glucose = -6.004 + 0.11685 * bS5SN3SumVarnc (R² = 0.98)

 $pH = -93.48 + 102.60 * VS5SV1Correlat (R^2 = 0.98)$

fructose = $70.470 - 0.2742 * RHPerc99 (R^2 = 0.98)$

total sugars = $131.11 - 0.5112 * RHPerc99 (R^2 = 0.98)$

L-ascorbic acid = $5536.5 - 21.43 * RHPerc99 (R^2 = 0.98)$

total soluble solids = $171.23 - 0.6492 * RHPerc99 (R^2 = 0.98)$

 $\text{$\mathbb{G}$-carotene} = -1.287 + 0.86230 * US5SH1Entropy ($\mathbb{R}^2 = 0.97)$

G-carotene = 5.4799 - 5.460 * aHMaxm10 (R^2 = 0.97)

CONCLUSION

The strong correlations (R of up to 0.99 and -0.99) and high coefficients of determination (R² of up to 0.98) confirm that image texture analysis can be a powerful, non-destructive tool for predicting key quality attributes of lacto-fermented sweet bell peppers.

FUTURE WORK / REFERENCES

Future research can explore the relationships between image texture parameters and the physicochemical quality of various fruit and vegetable species during lacto-fermentation and other preservation methods.

Strzelecki, M.; Szczypiński, P.; Materka, A.; Klepaczko, A. A software tool for automatic classification and segmentation of 2D/3D medical images. *Nuclear Instruments and Methods in Physics Research Section A, Accelerators, Spectrometers, Detectors and Associated Equipment* **2013**, 702, 137-140.

Szczypiński, P.M.; Strzelecki, M.; Materka, A.; Klepaczko, A. MaZda-A software package for image texture analysis. *Computer Methods and Programs in Biomedicine* **2009**, *94*, 66-76. Szczypiński, P.M.; Strzelecki, M.; Materka, A. Mazda-a software for texture analysis. In Proceedings of the 2007 International Symposium on Information Technology Convergence (ISITC 2007), Jeonju, Korea, 23–24 November 2007, 245-249.

Funding: This research is part of project No. 2023/07/X/NZ9/01642, "Determination of the relationship between the parameters of the images and the chemical properties of cucumber and pepper during fermentation" funded by the National Science Centre for the 7th edition of the MINIATURA call.