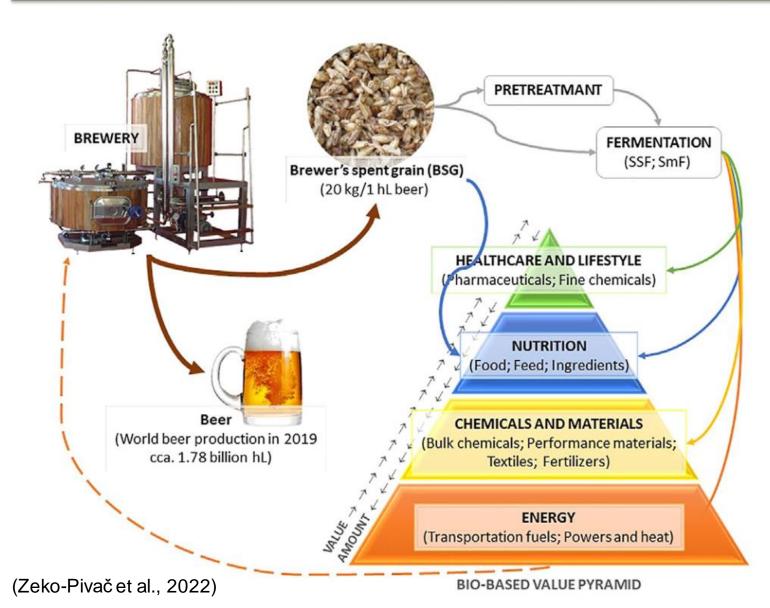
The 6th International Electronic Conference on Foods

28-30 October 2025 | Online



Fermentation of brewer's spent grain with *Pleurotus ostreatus*: A pathway to nutritional enhancement

Mariano M. Pascual, Carlos M. Luquet

Aquatic Ecotoxicology Laboratory, Applied Ecology Center of Neuquén (CEAN) Institute of Research in Biodiversity and Environment (INIBIOMA), National Scientific and Technical Research Council (CONICET), Junín de los Andes, Argentina.

INTRODUCTION & AIM

- ❖ Brewer's spent grain (BSG) is the principal byproduct of beer production, which still retains valuable nutritional components for the circular economy but the presence of antinutrients like Phytic Acid makes its use challenging as a component of **foods** and **feeds**.
- ❖ Phytic acid is the principal phosphorus storage form in grains and legumes and complexes with proteins and minerals, thereby **hindering digestion** and **absorption**.
- ❖ Content of Phytic acid can be reduced through solid-state fermentation (SSF) with edible fungi that produce phytases, resulting in the release of bioavailable soluble phosphorus.
- Edible fungi-based SSF also produces beneficial bioactives enhancing BSG nutritional quality and digestibility.

To enhance the nutritional quality, BSG was used as a substrate for SSF with Pleurotus ostreatus, targeting phytic acid reduction and phosphorus release

METHODS

BSG was obtained from a local brewery and dried (120°C for 2 h) for preservation. It was then rehydrated to 65% (w/w), autoclaved, and subject to SSF by P. ostreatus var. florida mycelium (strain A01 from CISPHoCoMe, Argentina) at 25°C for 14 and 21 days. A non-inoculated Control group was included (n=4). The products were then dried and ground, and each sample was assessed for phytic acid (Haug & Lantzsch, 1983), acid-soluble phosphorus, and total phosphorus (AOAC 965.17) as detailed in Pascual et al. (2025).

RESULTS & DISCUSSION

P. ostreatus mycelium grew very efficiently and consumed ~35 and 39% of the BSG dry mass in 14 and 21 days, respectively (p < 0.0001).

Phytic acid was reduced by ~81% (p < 0.0001), from 10.4 ± 0.3 mg/g in control to 2.0 ± 0.7 mg/g after 14 days and remaining after 21 days (**Fig. 1A**).

Acid-soluble phosphorus was increased by ≥ 100% throughout fermentation times, from 1.8 \pm 0.1 mg/g in control, reaching to 3.8 \pm 0.2 mg/g at 21 days (p < 0.05, **Fig. 1B**), suggesting higher bioavailability.

Total phosphorus also increased by ~49 and 60% in myceliated samples, from 4.3 ± 0.1 mg/g in Control to 6.4 ± 0.1 and 6.9 ± 0.2 mg/g after 14 and 21 days, respectively (p < 0.01, **Fig. 1C**), indicating substrate consumption.

Figure 1. Content of Phytic acid (A), Acid-soluble phosphorus (B), and Total phosphorus (C) at different fermentation times of BSG with Pleurotus ostreatus mycelium. Results are expressed as mean \pm SD. Different letters indicate significant differences (Tukey, p < 0.05; n = 4).

CONCLUSION

- * BSG can be revalorized through SSF with *P. ostreatus*, by reducing the phytic acid while enhancing phosphorus content, particularly in its bioavailable form.
- These findings underscore the potential of upcycling byproducts like BSG, promoting resource efficiency in food systems and contributing to sustainable practices.

REFERENCES