

Modeling studies on the level of inhibition using gammadecalactone-enriched pectin films against *Bacillus subtilis*

Antoni Wyskwar¹, dr hab. Sabina Galus², prof. SGGW, dr inż. Jolanta Małajowicz³

- ¹ Faculty of Biology and Biotechnology, Warsaw University of Life Sciences, 159 Nowoursynowska Str, 02-776 Warsaw
- ^{2, 3} Institute of Food Sciences, Warsaw University of Life Sciences, 159c Nowoursynowska Str, 02-776 Warsaw, Poland

INTRODUCTION

Food safety challenge

Microbial contamination reduces the **shelf life** of fresh produce and contributes to significant food losses worldwide.

Gamma-decalactone (GDL) (C₁₀H₁₈O₂)

Naturally occurring compound with a characteristic **peach like aroma**, widely used in the food industry.

Recent studies suggest it may also possess

/antimicrobial properties. While investigating the basic mechanism of peach aroma toxicity in yeast cells, it was demonstrated that the lactone inhibits H+-ATPase activity in microbial cells, resulting in changes to the cell membrane's integrity¹.

Edible films & coatings

Biodegradable pectin-based films enriched with natural compounds offer a sustainable alternative to **synthetic packaging**, providing both preservation and consumer appeal².

RESULTS & DISSCUTION

Photographs of apple pectin films: control and with added GDL

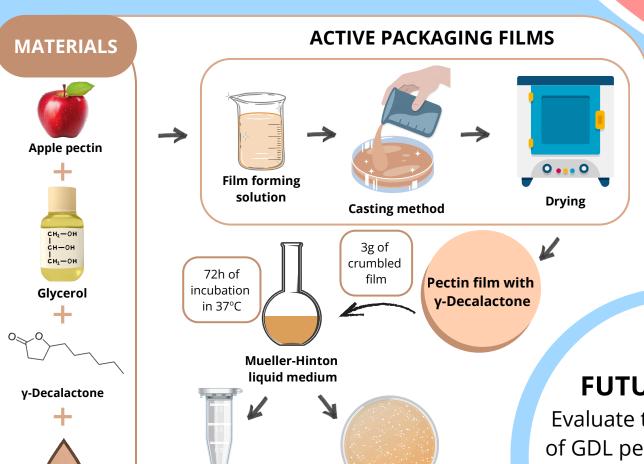
Biomass yields of microbial cells growing on Mueller-Hinton with the addition of pectin films with a varied GDL concentration.

	Biomass Yield (g d.w./dm³)	
Type of Medium	48 h	72 h
Without film	4.56 ± 0.23	6.09 ± 0.14
AP	6.23 ± 0.11	7.55 ± 0.27
AP_2.5GDL	3.02 ± 0.45	3.87 ± 0.31
AP_5GDL	0	0
AP_10GDL	0	0

Cell growth viability cultivated on media with film containing different concentrations of GDL.

	Viability Indicator (log CFU/mL)	
Type of Medium	48 h	72 h
Without film	6.81 ± 0.10	8.09 ± 0.17
AP	7.91 ± 0.21	9.17 ± 0.04
AP_2.5GDL	5.62 ± 0.05	7.13 ± 0.41
AP_5GDL	0	0
AP_10GDL	0	0

AIM


Evaluation of the **antimicrobial** activity of GDL added to edible pectin coatings used in fruit coating. The biomass yield results above indicate that adding a lactone-containing coating to the culture medium inhibits microorganism growth. Media with the addition of coatings with a lactone concentration of 2.5% were characterised by an almost **two times** lower cell biomass yield than the control medium (containing a coating without the lactone). For *B. subtilis* bacteria, complete cell inhibition was already observed in media with the addition of 5% GDL.

It is **hypothesized** that lactones may inhibit H+-ATPase activity in microbial cells, leading to altered cell membrane integrity. It is also likely that hydrophobic interactions with the acyl chains of cell membrane phospholipids occur, leading to increased permeability disturbances. According to numerous

reports, lactones **lower intracellular pH**, leading to accelerated cell death.

METHODS

Biomass yields of

microbial cells

Tween 80

FUTURE WORK

Evaluate the effectiveness of GDL pectin films on real fruits during storage to verify their preservation potential.

CONCLUSION

Incorporating **gamma-decalactone** (**GDL**) into pectin-based films effectively inhibited the growth of *Bacillus subtilis*. The results confirm GDL as a promising **natural antimicrobial agent** for edible films, combining food safety benefits with enhanced sensory appeal.

This approach offers a sustainable strategy for **extending the shelf life of fresh produce** and reducing food waste.

REFERNCES

- 1. Aguedo, M.; Beney, L.; Wache, Y.; Belin, J.-M. Mechanisms Underlying the Toxicity of Lactone Aroma Compounds towards the Producing Yeast Cells. J. Appl. Microbiol. 2003, 94, 258–265.
- 2. Kozakiewicz, G.; Małajowicz, J.; Karwacka, M.; Ciurzyńska, A.; Szulc, K.; Żelazko, A.; Janowicz, M.; Galus, S. The Effects of Gamma-Decalactone on the Physicochemical and Antimicrobial Properties of Pectin-Based Packaging Films. Materials 2025, 18, 3831.

This research was financially supported by resources of the Ministry of Education and Science - Grant No. SKN/SP/631013/2025, titled "Smart edible coatings and films as an ecological alternative to plastic".

Cell growth viability

cultivation