

Investigating the role of probiotic lactic acid bacteria strains in improving the antioxidant properties of fermented white cabbage.

Jesica E. Blajman^{1, 2}, Pierina M. Scarafia², María E. Tarchini², Ariel O. Risso¹, Melisa A. Puntillo³, Roxana B. Paez¹, Mariana S. Lingua¹

1 Instituto de Investigación de la Cadena Láctea (IdICaL, CONICET-INTA), Ruta 34 Km. 227, CP 2300 Rafaela, Santa Fe, Argentina. 2 Universidad Nacional de Rafaela, Bv. Presidente Julio A. Roca 989, CP 2300 Rafaela, Santa Fe, Argentina. 3 Instituto de Lactología Industrial (INLAIN, CONICET-UNL), Santiago del Estero 2829, CP 3000 Santa Fe, Argentina.

INTRODUCTION & AIM

Administration of probiotic cultures would increase the functional attributes of plant-based matrices and consequently the competitiveness of production. Hence, the current study investigated the antioxidant properties of sauerkraut utilising natural fermentation or the commercial probiotic strains, *Lactiplantibacillus plantarum* 01 (LP01) and *Lacticaseibacillus rhamnosus* 04 (LR04) (Probiotical SpA, Novara, Italy), as single starter cultures.

METHOD

Lactic acid bacteria (LAB) production:

Fermentation trial:

White cabbages were shredded, mixed with sea salt (2.0% w/v), and packed into glass jars. The experimental samples were inoculated with spray-dried LP01 or LR04 (1 × 10⁶ cfu/g of sauerkraut) and compared to a non-inoculated control group. Sauerkraut was fermented under anaerobic conditions at 20°C.

The Folin–Ciocalteu method was used for the determination of total phenolic content (TPC) (Singleton & Rossi, 1965) at 0, 21, and 28 days. The *in vitro* antioxidant capacity was assessed using ferric reducing antioxidant power (FRAP assay) and free radical scavenging activity (ABTS and DPPH assays) (Benzie & Strain, 1996; Brand-Williams et al., 1995; Re et al., 1999).

RESULTS & DISCUSSION

The highest TPC (202.38 mg GAE/100 g DW), FRAP (205.3 mg GAE/100 g DW), and DPPH (57.5 mg GAE/100 g DW) values were observed in LP01 samples at day 21, but the amount declined for LP01 and LR04 groups at the final fermentation stage ($p \le 0.05$). Regarding the ABTS assay, control values at day 21 were similar to those obtained with LP01 and LR04 treatments ($p \ge 0.05$). However, at day 28, ABTS scavenging activity was higher for naturally fermented cabbages (542.4 mg GAE/100 g DW) ($p \le 0.05$) (Figures 1 and 2).

Figure 1. Total polyphenol content (TPC) in sauerkraut during spontaneous and controlled fermentation. Values are means (± SD) of three repetitions.

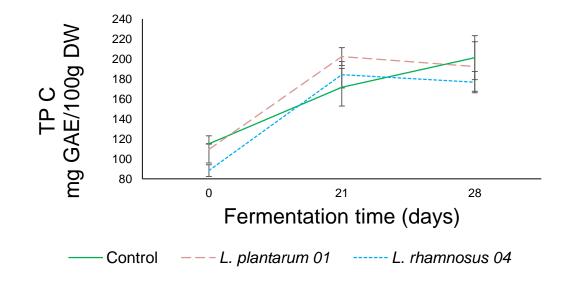
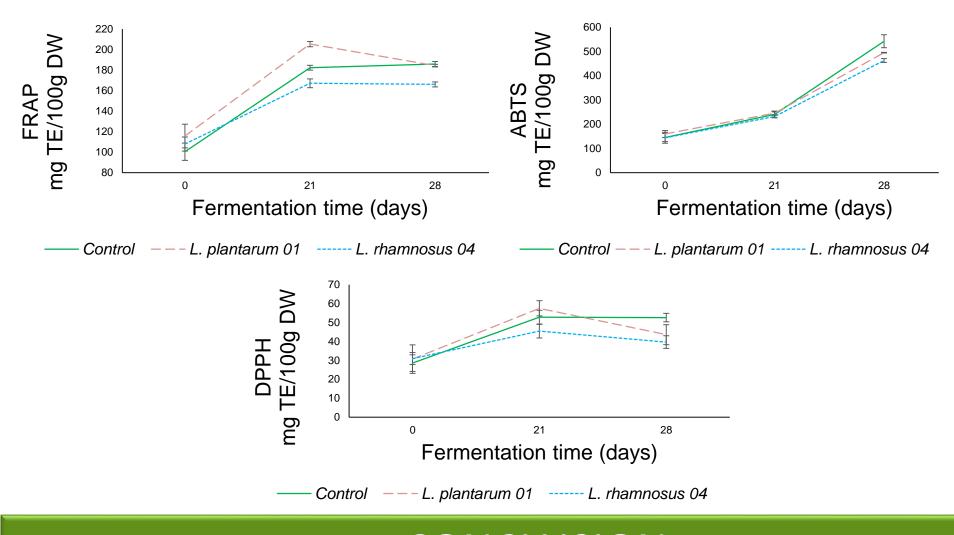



Figure 2. Antioxidant capacity (FRAP, ABTS and DPPH assays) in sauerkraut during spontaneous and controlled fermentation. Values are means (± SD) of three repetitions.

CONCLUSION

Cabbage fermentation with LP01 for 21 days presents an opportunity to create a probiotic-rich sauerkraut that increases TPC and antioxidant capacity estimated by FRAP and DPPH methods.

REFERENCES

Benzie, I. F., & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": the FRAP assay. *Analytical Biochemistry*, 239(1), 70-76.

Brand-Williams, W., Cuvelier, M. E., & Berset, C. L. W. T. (1995). Use of a free radical method to evaluate antioxidant activity. *LWT-Food Science and Technology, 28*(1), 25-30.

Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. *Free Radical Biology and Medicine, 26*(9-10), 1231-1237.

Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. *American Journal of Enology and Viticulture*, *16*(3), 144-158.