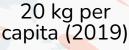
Innovative Processing Approaches for Heavy Metal Detoxification in Seafood

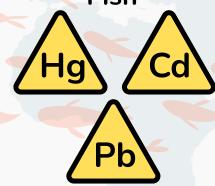
A.O.S. Jorge^{1*}, M. Carpena², J. Echave^{2,3}, P. Barciela², Rafael Nogueira-Marques⁴, M.A. Prieto², M. Beatriz P. P. Oliveira¹

¹ LAQV@REQUIMTE, Department of Chemical Sciences, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal. ²Universidade de Vigo, Nutrition and Food Group (NuFoG), Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA) – CITEXVI, 36310 Vigo, Spain;


³Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal.

⁴Universidade do Porto - Faculdade de Farmácia, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal

*Corresponding Author: A.O.S. Jorge (anolijorge@gmail.com)


Global Seafood Consumption (2019)

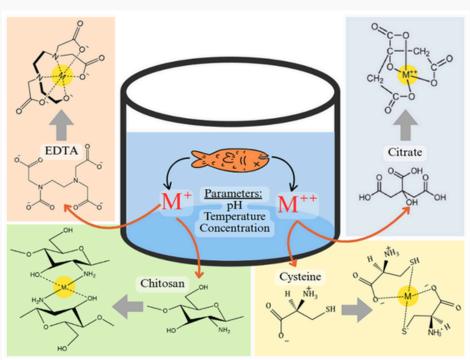
Hazards Accomulated in Fish

NEED FOR SOLUTIONS

Integrating novel and traditional methods ensures safer seafood for global consumers

Table 1: Summa	ary of the Effica	acy of Tradition	al Methods
	=		

Table 1: Summary of the Efficacy of Traditional Methods						
Method (Treatment)	Species / Product	Heavy Metal(s)	Reduction Achieved	Ref.		
Acidic marination (vinegar)	Rainbow trout fillets (pickled)	Arsenic (As)	~90% reduction	(Cieślik et al., 1970)		
Salt-water soaking (10% NaCl, 75°C (348.15°K))	Tilapia fillets (pre-drying)	Nickel (Ni), Copper (Cu)	Significant reduction (>30% lower levels)	(Basak et al., 2023)		
Boiling (5 min)	Common carp fillets	Copper (Cu)	54.1% reduction	(Neidoni et al., 2024)		
Frying (pan- fry)	Common carp fillets	Copper (Cu)	80.3% reduction	(Neidoni et al., 2024)		
Microwaving	European sea bass fillets	Lead (Pb)	44% reduction	(Ersoy et al., 2006)		


Table 2: Summary on modern removal of heavy metals from seafood

Seafood Species	Technique	Optimum Treatment Conditions	Removal percentage	Ref.
Clarius batrachus (Catfish)	Eggshell-based catalyst with trisodium citrate dihydrate (TCD)	0.400 kg/m3 3 hours 32.50 ± 0.50°C (305.65 ± 0.5°K)	90% of Cu 84% of Cd 72% of Pb 100% of Ni	(Wan Abdullah, Naushad Ali, et al., 2020b)
Perna viridis (Green mussel)	Trisodium citrate, disodium oxalate, and sodium acetate	Sodium Acetate: 0.500 kg/m3 32.5 ± 0.5°C (305.65 ± 0.5°K) 5 hours pH 6–7	59.90% of As 88.57% of Pb 68.01% of Cd 79.67% of Ni	(Wan Azelee et al., 2014)
Fish oil	Supercritical CO ₂ extraction (SFE)	61 MPa, 40 C (313.15 K), 4 h (with CO ₂ flow ~3.7 mL/min)	98.3% of Pb 96.1% of Cu 94.9% of As 93.7% of Hg	(Hajeb et al., 2014)
Tilapia fish (Oreochromis niloticus)	Electrocoagulati on + water immersion	~6 V DC, 35–40 min in distilled water bath	~90% reduction of total heavy metals	(Sandra et al., 2020)

NOVEL GREEN METHODS UP TO 98% REDUCTION

TRADITIONAL METHODS 20-90% REDUCTION

Mechanism of seafood detoxification using foodgrade agents. Schematic representation of key chelating agents (EDTA, citrate, chitosan, cysteine) binding metal ions (M+/M²⁺) from fish tissues, influenced by parameters like pH, temperature, and concentration

Fundação para a Ciência e a Tecnologia

ACKNOWLEDGEMENTS

This work was supported by FCT - Fundação para a Ciência e Tecnologia through the individual research grants of J. Echave (2023.04987.BD) with the doi https://doi.org/10.54499/2023.04987.BD and A.O.S. Jorge (2023.00981.BD), with the DOI identifier https://doi.org/10.54499/2023.00981.BD. by Xunta de Galicia for supporting the pre-doctoral grant of P. Barciela (ED481A-2024-230)