

The 6th International Electronic Conference on Foods

MDPI

28-30 October 2025 | Online

Modeling the Effects of Pretreatment and Solar Drying on Bitter Leaf's (Vernonia amygdalina)

Chromatic Profile to Improve Its Market Value

Titilope Modupe Fasuan^{1*} & Onaolapo Adeola Olatunji1^{1,2}

M titilope.olagunju@yahoo.com | onaola.olatunji@gmail.com

¹Product Development Programme, National Horticultural Research Institute, Ibadan, Nigeria ²Department of Food Technology, University of Ibadan, Nigeria

INTRODUCTION & AIM

- Bitter leaf is a nutritious African vegetable valued for its deep green colour
- Colour degradation during solar drying reduces market appeal

Aim: Model the effect of pretreatments and leaf source on chromatic changes

METHOD

- Models: Zero-Order, First-Order, Fractional Conversion, Arrhenius
- CIE L*a*b* colour monitoring
- II Nonlinear regression (R², SSE)

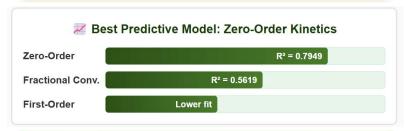
RESULTS & DISCUSSION

COLOUR CHANGES DURING PROCESSING

Solar Drying Effects

Ekere: 31.45, Bodija: 25.30

Lightness fluctuation Yellowness increase 17.33, 18.64


Urban Samples

Superior model fit

(Bodija)

Squeeze-washed (rural): $\Delta E = 70.13$

Most significant colour change (p<0.05)

CONCLUSION

© CONCLUSION: To Preserve Export-Quality Green Colour

- ✓ Source leaves from urban farms (Bodija) for better chromatic stability
- $\checkmark\,$ Avoid blanching and squeeze-washing pretreatments
- ✓ Use minimal pretreatment for optimal colour retention
- ✓ Zero-Order kinetics can predict colour changes during drying

FUTURE WORK / REFERENCES

Controlled drying technologies | Predictive quality models

Find references in QR code