

MICROENCAPSULATION OF PEANUT SKIN POLYPHENOLS: APPLICATION OF PEANUT PROTEIN ISOLATE AS ENCAPSULATING AGENT

Bergesse AE (1,2), Barbero AD (1,2,3), Oroná ME (1,2), Vera LG (1,3), Grosso NR (1,2), **Nepote V (2,3).**

- (1) Facultad de Ciencias Agropecuarias Universidad Nacional de Córdoba (FCA-UNC), Córdoba, Argentina.
- (2) Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Córdoba, Argentina.
- (3) Facultad de Ciencias Exactas, Físicas y Naturales Universidad Nacional de Córdoba (FCEFyN-UNC), Córdoba, Argentina.

INTRODUCTION & AIM

Peanut skin is a rich source of polyphenols, and the expeller protein isolate (PPI) production. enables Combining maltodextrin (MD) with proteins may improve encapsulation performance. Although PPI has several applications, its use as an encapsulating agent remains unexplored. This study assessed the physicochemical properties of microcapsules containing peanut skin polyphenols, using MD and PPI as encapsulating agents.

METHOD

Peanut skin extract (PSE) was obtained via ethanol-water maceration (70:30 v/v). MD and PPI were mixed for 1 h at ratios of 100:0 (F1), 0:100 (F2), 50:50 (F3), 25:75 (F4), and 75:25 (F5), then combined with PSE (20% w/w), homogenized at 10,000 rpm (Ultra Turrax T25), and spray-dried (pump 10%, aspirator 100%, 160 °C inlet, 400 L/h airflow, Mini Spray Dryer Büchi B-290) (Figure 1).

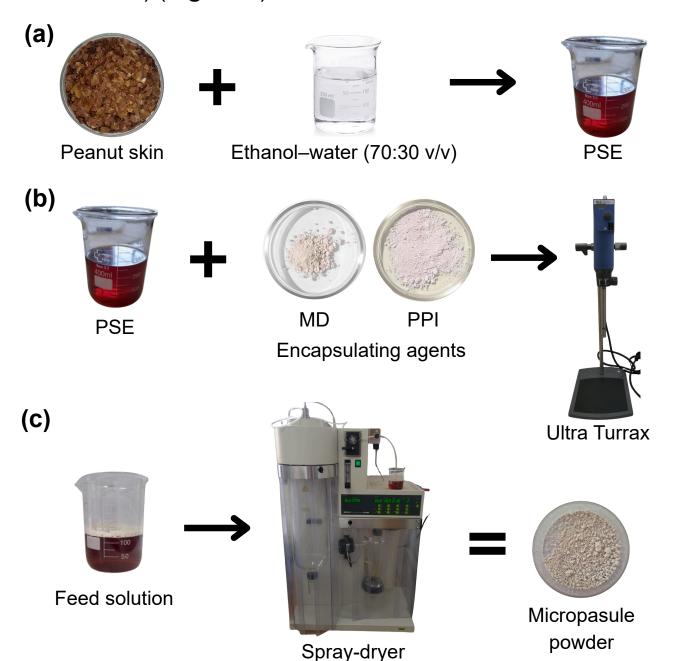


Figure 1. Schematic procedure for the preparation of the microcapsule formulations: (a) preparation of PSE; (b) preparation of feed solutions; (c) spray-drying process.

REFERENCES

RESULTS & DISCUSION

F1 showed the highest DY% and solubility, followed by F5, with significant reductions as PPI increased, reaching the lowest values in F2. EE% was highest in F1 and F5 (p < 0.05), but all formulations exceeded 88%, indicating acceptable performance1. Bulk density decreased with more PPI, while F4 and F1 showed the highest particle densities and porosities. Wettability increased from 7.28 min (F1) to 33.17 min (F2), and F3 had the highest hygroscopicity. This results were similarly reported by Mahdi et al.². Moisture (4.28-5.31%) and tapped density (0.31-0.42 g cm⁻³) did not show significant differences (p > 0.05) (**Table 1**).

Table 1. Physicochemical characterization of microcapsules.

	_		_	
Sample	Drying yield (DY%)	Encapsulation efficiency (EE%)	Bulk density (g cm ⁻³)	Particle density (g cm ⁻³)
F1	80.51±0.33c	99.26±0.43d	0.31±0.01d	2.51±0.00c
F2	39.92±3.20a	91.80±1.95ab	0.20±0.00a	1.25±0.00a
F3	30.67±0.04a	88.09±0.27a	0.25±0.00c	1.26±0.00b
F4	39.59±7.78a	94.08±3.45bc	0.23±0.00b	2.51±0.00c
F5	68.99±2.22b	97.61±0.28cd	0.26±0.01c	1.25±0.00a
Sample	Porosity (%)	Wettability (min)	Solubility (%)	Hygroscopicity (%)
Sample F1	Porosity (%) 83.12±0.38b		Solubility (%) 91.44±1.14 e	Hygroscopicity (%) 11.39±0.47a
		(min)		(%) ————————————————————————————————————
F1	83.12±0.38b	(min) 7.28±0.25a	91.44±1.14 e	(%) 11.39±0.47a
F1 F2	83.12±0.38b 76.98±4.01ab	(min) 7.28±0.25a 33.17±0.41d	91.44±1.14 e 33.51±0.59a	(%) 11.39±0.47a 11.64±0.65ab
F1 F2 F3	83.12±0.38b 76.98±4.01ab 70.32±6.14a	(min) 7.28±0.25a 33.17±0.41d 27.58±0.63c	91.44±1.14 e 33.51±0.59a 69.80±0.70c	(%) 11.39±0.47a 11.64±0.65ab 13.01±0.05c

Different letter within column indicate significant differences (ANOVA, Fisher's LSD test, $\alpha = 0.05$).

CONCLUSION

MD exhibited the most favorable encapsulation properties. Using PPI alone affected key technological parameters, while MD:PPI blends showed acceptable encapsulation performance. These findings highlight their potential as antioxidant delivery systems for food preservation.

¹ Zhao, M., et al. (2022). *Front. Nutr.*, 9, 1007863.

² Mahdi, A. A., et al. (2020). *Int. J. Biol. Macromol.*, 152, 1125–1134.