

FRAP (mg FeSO4/g of DM)

DNS (mg glucose eq/g)

Techno-Functional and Antioxidant Properties of Plant and Insect-**Based Flours**

Shewangzaw Addisu Mekuria 1, 2 and Joanna Harasym 1, 3

¹ Department of Biotechnology and Food Analysis, Wroclaw University of Economics and Business, Komandorska 118/120, 53-345 Wroclaw, Poland ² University of Gondar, P. O. Box 196, Gondar, Ethiopia

³ Adaptive Food Systems Accelerator-Science Centre, Wroclaw University of Economics and Business, Komandorska 118/120, 53-345 Wroclaw, Poland shewakibr12@gmail.com

INTRODUCTION & AIM

- > Techno-functional, color, and antioxidant properties of food flours is fundamental in assessing their potential applications in food formulation and processing.
- > Techno-functional attributes influence the structural, rheological, and sensory characteristics of food systems.
- \triangleright Color parameters (L*, a*, b*) are vital indicators of consumer acceptability.
- Antioxidant properties (FRAP, DPPH, ABTS, TPC, and DNS), reflect the flour's capacity to scavenge free radicals and its contribution to nutritional quality.
- characteristics > Collectively, these provide comprehensive insight into the functional and healthpromoting potential of flours, enabling the development of value-added and nutritionally enriched food products.
- This study aimed to evaluate the techno-functional and antioxidant properties of soybean, maize, red teff and insect bee larvae

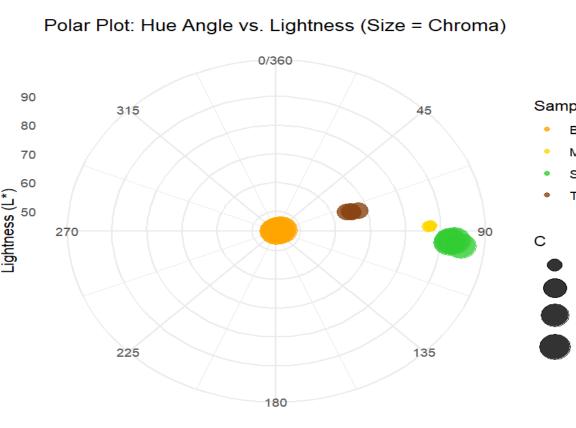
METHODS

Flour Sample Collection and Preparation

Granulometric Analysis

CR-310

Colorimeter Analyses Spectrophotometric Analyses


Functional Properties

- Water-Holding Capacity (WHC)
- Water Absorption Capacity (WAC)
- Oil Absorption Capacity (OAC)
- Hydrophilic-Lipophilic Index (HLI)
- Water Absorption Index (WAI)
- Water Solubility Index (WSI)
- Swelling Power (SP)
- Foaming Capacity (FC)
- Foam Stability (FS) • Emulsion Activity (EA)
- Emulsion Stability (ES)
 - Least Gelation Capacity (LGC)

RESULTS

Table 1-Techno-Functional and Granulometry Properties of Food Flours (g/g)

	Flours			
	Maize	Teff	Soybean	Bee Larvae
Granulometry				
>0.355	95.5	60.0	95.1	42.2
0.250-0.355	2.9	36.2	4.3	44.9
<0.250	1.6	3.8	0.6	12.9
Techno-Functional Properties				
WHC	4.67 ± 0.29^{c}	2.50 ± 0.84^{d}	5.54 ± 0.39^{a}	6.00 ± 0.56^{a}
WAC	2.76 ± 0.06	2.85 ± 0.19	2.63 ± 0.20	2.42 ± 0.14
OAC	1.78 ± 0.09^{b}	1.84 ± 0.14^{ab}	1.89 ± 0.05^{a}	2.16 ± 0.05^{a}
HLI	1.55 ± 0.07^{a}	1.56 ± 0.19^{a}	1.39 ± 0.14^{a}	1.12 ± 0.08^{b}
WAI	7.65 ± 0.18^{a}	5.62 ± 0.39^{b}	3.15 ± 0.31^{d}	4.06 ± 0.53^{c}
WSI	11.44 ± 0.91^{c}	9.05 ± 0.64^{d}	40.18 ± 3.72^{a}	23.73 ± 2.74^{b}
SP	8.64 ± 0.28^{a}	6.18 ± 0.38^{b}	5.31 ± 0.57^{c}	5.31 ± 0.57^{c}
FC (ml)	53.5 ± 0.71^{b}	54.0 ± 1.41^{b}	57.5 ± 0.71^{a}	54.0 ± 0.0^{b}
FS (%)	92.68 ± 1.77^{b}	92.68 ± 1.77^{b}	89.56 ± 0.09^{c}	98.15 ± 0.0^{a}
EA (%)	7.26 ± 0.52	7.49 ± 1.19	7.75 ± 0.96	5.71 ± 1.89
ES (%)	11.49 ± 1.89^{a}	7.57 ± 1.72^{b}	7.25 ± 0.96^{b}	2.66 ± 0.72^{c}
LGC (%)	24.0 ± 0.0^{b}	18.0 ± 0.0^{d}	20.0 ± 0.0^{c}	28.0 ± 0.0^{a}
		Antioxidant Assays (Mean Values per Sample)		

Soybear

Figure 1 -Colorimetry analysis of food flours **Hue Angle-Chroma-Lightness**

Figure 2 –Antioxidant properties of food flours

CONCLUSIONS

- Bee larvae had the highest WHC, OAC, FS, LGC and lowest HLI and S.
- Maize exhibited the highest WAI and SP, and soybeans recorded the highest WSI and FC.
- Teff exhibited the highest antioxidant properties.
- Soybeans are suitable for moist burgers and plant-based meat alternatives, bee larvae like for novel protein bars, teff for crispy snacks, and maize for chip coatings and thickened sauces.

FUTURE WORK

Nutritional, pasting, rheological and texture attributes of food flours and their blend products

ACKNOWLEDGMENTS

- Wroclaw University of Economics and Business, Department of Biotechnology and Food analysis, Wroclaw Poland.
- Polish National Agency for Academic Exchange (NAWA) Contract No. BNI/ULM/2024/1/00147 for this postdoc research funding.