

The 1st International Electronic Conference on Medicinal Chemistry and Pharmaceutics

01-30 November 2025 | Online

Unraveling the antidiabetic and antidepressant effects of crude methanolic extracts of *Clitoria ternetea* flower in diabetic mice

Basrat Jahan Deea¹, Nurun Nahar¹, <u>Sk. Salman Araf¹</u>, Parisa Tamannur Rashid¹, Najneen Ahmed¹, Nazifa Tabassum^{1*}

INTRODUCTION & AIM

Clitoria ternatea L. (CT), commonly known as the butterfly pea or Asian pigeonwings, is a perennial herbaceous plant belonging to the family Fabaceae. It is widely distributed in tropical and subtropical regions of Asia and is easily recognized by its striking deep-blue flowers. Traditionally, C. ternatea has been used in Ayurvedic and folk medicine for its diverse therapeutic properties, including memory enhancement, anti-inflammatory, antioxidant, anxiolytic, and neuroprotective effects [1]. Its roots, leaves, and flowers are known to contain a rich profile of bioactive phytochemicals such as flavonoids, alkaloids, steroids, tannins, and glycosides, which contribute to its broad pharmacological potential. Despite extensive traditional use, scientific exploration of its efficacy in complex metabolic and neurological disorders, particularly diabetes and depression. Both conditions are often interlinked through oxidative stress and neuroendocrine dysregulation, highlighting the need for multifunctional plant-based therapeutic agents. The present study was therefore designed to isolate and characterize bioactive compounds from C. ternatea using gas chromatography mass spectrometry (GC-MS) and to evaluate their antidiabetic and antidepressant potential through a combination of in silico, in vitro, and in vivo approaches. Molecular docking was performed to predict the interaction of isolated compounds with key antidiabetic and antidepressant protein targets, while in vivo studies on Swiss albino mice assessed pharmacological effects via blood glucose analysis and behavioral tests. Additionally, physicochemical profiling, drug-likeness, and ADMET analyses were conducted to predict pharmacokinetic suitability [2]. The aim of this study is to explore the phytochemical constituents of Clitoria ternatea and investigate their potential antidiabetic and antidepressant activities through a multifaceted approach integrating computational, biochemical, and behavioral analyses.

METHOD

RESULTS & DISCUSSION Fig: Isolated compounds from Clitoria tarnatea by GC-MS. **Behavioral Tests on Diabetic induced Mice:** FBG Level (After 1 week) No. of Head Dipping (After 1 week) mmobility time (After 1 week) No. of Head Dipping (After 2 week) Immobility time (After 2 week) DOPAMIN SGLT2 **AMPK GAMMA** receptor 2V5Z 6BE1 4QFG 2PRG 7VSI **5VEW** Stigmasterol Stigmasterol -8.3 -8.9 Metformin(Standard) -6.682 1.213 1.201 94.97 -2.783 -2.783 Yes 0.178 0.771 0.781 CYP2D6 substrate CYP1A2 inhibition CYP2C19 inhibitio CYP2D6 inhibitio 0.618 0.628

CONCLUSION

Clitoria ternatea exhibited notable antidiabetic and antidepressant effects, supported by both in silico and in vivo findings. Key phytochemicals, especially stigmasterol and γ -sitosterol, showed strong target binding and favorable pharmacological profiles. Overall, the study suggests that C. ternatea may serve as a promising natural source for managing diabetes and related depressive conditions.

FUTURE WORK / REFERENCES

Our future work will involve isolating individual compounds from the extract and evaluating their specific bioactivities

- 1. Al-Snafi AE. Pharmacological importance of Clitoria ternatea—A review. IOSR journal of Pharmacy. 2016 Mar;6(3):68-83.
- 2. Islam MA, Mondal SK, Islam S, Akther Shorna MN, Biswas S, Uddin MS, Zaman S, Saleh MA. Antioxidant, cytotoxicity, antimicrobial activity, and in silico analysis of the methanolic leaf and flower extracts of clitoria ternatea. Biochemistry Research International. 2023;2023(1):8847876.