The 4th International Online Conference on Materials

3-6 November 2025 | Online

Determination the material properties of twill-woven glass fabric polymer composite using experimental modal analysis and numerical technique

Andrejs Kovalovs¹, Vitalijs Kuzmickis¹, Vladimir Kulakov² ¹Institute of High Performance Materials and Structures Riga Technical University, Riga, Latvia ²Institute for Mechanics of Materials, University of Latvia, Riga, Latvia

INTRODUCTION & AIM

The work considers the numerical-experimental method for identifying the elastic characteristics of composite materials using experimental data on the natural frequencies and vibration modes of plate-shaped specimens using twill-woven glass fibre fabric material.

METHOD

An experimental modal analysis is performed on the plate to

The composite plates (8, layered 12, 16 layers) are

vacuum

process.

fabricated using the infusion determine its natural frequencies and vibration mode shapes. Modal **Experimental Design Response Surface ANSYS Modal analysis** Simulation

a) An experimental plan is created. b) Finite element modal analysis was performed. c) Approximation equations are obtained for each frequency.

The discrepancy between the calculated values of natural frequencies is estimated.

$$\Phi_{i}(\mathbf{x}) = \sum_{i=1}^{m} \frac{\left(f_{i}^{\exp} - f_{i}^{FEM}\right)^{2}}{\left(f_{i}^{\exp}\right)^{2}} \Rightarrow \min$$

 $x = [E_1, E_2, G_{12}, U_{12}]$

Identified characteristic.

RESULTS & DISCUSSION

1. Elastic characteristics determined by numerical experimental method.

Elastic Const.	8 lays.	12 lays.	16 lays.	Aver.	CV, %	
$E_1 = E_2$, GPa	19.66	21.36	21.29	20.77	4.63	
G_{12} , GPa	4.27	4.26	4.27	4.27	0.14	
U ₁₂	0.12	0.11	0.105	0.112	6.84	
const: E_3 =9.5 GPa, $G_{13}=G_{23}$ =2.5 GPa, $U_{13}=U_{23}$ =0.25						

2. The identified elastic characteristics were used for a comparative analysis of the natural frequencies.

NIa	8 lays.			12 lays.			16 lays.		
No	f_i^{exp}	f_i^{FEM}	Δ, %	f_i^{exp}	f_i^{FEM}	Δ, %	f_i^{exp}	f_i^{FEM}	Δ, %
1.	23.0	23.0	0.0	34.3	34.5	0.7	46.0	46.0	0.1
2.	29.3	30.3	3.4	46.3	47.3	2.2	60.5	62.9	4.0
3.	54.5	55.7	2.2	83.8	84.6	1.0	111.8	112.6	8.0
4.	0.08	77.8	2.8	125.0	121.5	2.8	168.0	161.7	3.8
• • •							•••		
12.	223.0	214.7	3.7	345.5	335.0	3.0	460.6	445.3	3.3
Avr	age:		2.2			1.8			2.1

3. Comparison of Elastic modules and Poisson's ratio from the vibration and static tensile test.

Elastic Const.		Static Ter	Identified	- Δ, %		
	8 lays.	12 lays.	16 lays.	Average	Average	— , 70
$\overline{E_{l}}$, GPa	21.02	21.09	22.61	21.57	20.77	3.7
U ₁₂	0.108	0.096	0.105	0.103	0.112	8.0

CONCLUSION

The advantages of this methods are the ability to determine the material properties after external influences (temperature, aging, water absorption, etc.), which allows one to reduce the consumption of material

FUNDING

Funding: This research was funded by the Latvian Council of Science, project "Smart twisting active rotor blades with a functionally graded foam core (SmarTARB)" No. Izp-2023/1-0587.