The 4th International Online **Conference on Materials**

3-6 November 2025 | Online

Influence of RF sputtering power during RFMS on the electrochemical behavior of zirconia thin films in a Hanks solution

The electrochemical

behavior of the

films was assessed

trough

potentiodynamic

polarization tests in Hank's solution at a

temperature close

to that of the human

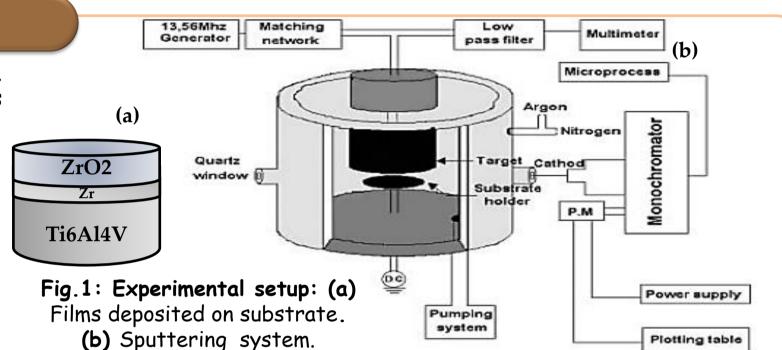
body.

Hind Zegtouf 1*, Saoula Nadia 2, Azibi Mourad 2

* h.zeqtouf@ens-setif.dz

1 Laboratory: Sciences of Matter for Applications and the Environment, Department of Sciences, Teacher Education College of Sétif - Messaoud Zeghar, El Eulma, Sétif, 19600, Algeria

2 Division Milieux Ionisés et Lasers, Centre de Développement des Technologies Avancées,16081, Baba Hassen,Alger,Algérie.


INTRODUCTION & AIM

Zirconia (ZrO₂) thin films have become very attractive to the coating industry thanks to its remarkable properties. ZrO2 can exist in the monoclinic, tetragonal or cubic phases depending on the temperature. These interesting properties has led to numerous efforts to deposit ZrO2 films by various techniques, including chemical vapor deposition (CVD)[1], sol-gel techniques [2]... and sputtering [3]. Magnetron sputtering offers good control over the deposition rate, and film composition [3, 4]. The aim of this study was to prepare ZrO2 thin films using RF magnetron sputtering method at different sputtering power and to systematically investigate how the sputtering power affects their microstructure, surface morphology, hydrophobicity and electrochemical behavior in a physiological environment.

METHOD

A pure zirconium target was sputtered in $Ar-O_2$ gas mixture. The sputtering power was varied in order to investigate its influence on the film's properties.

Target	Pure Zirconium (99.99%)
Target-Substrate distance	30 mm
Base Pressure	1.0 × 10 ⁻⁶ Torr
Sputtering gas	20 sccm of Ar
Reactive gas fraction	30% of O ₂
Sputtering Power	100- 250- 400 W
Deposition time	60 min
Substrate Bias	-100 V

Electrochemical behavior

RESULTS & DISCUSSION

Structure:

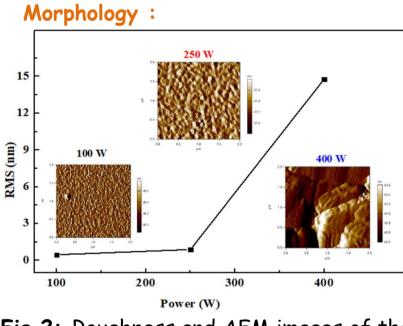
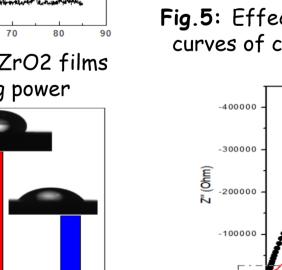



Fig. 2: Roughness and AFM images of the surface morphology of deposited ZrO2

Fig. 3: Diffractograms of ZrO2 films

at different sputtering power

Sputtring Power

log i (A)

Fig. 5: Effect of sputtering power on the polarization curves of coated and uncoated substrate in Hanks' solution

100 W 250W

400 W Substrate

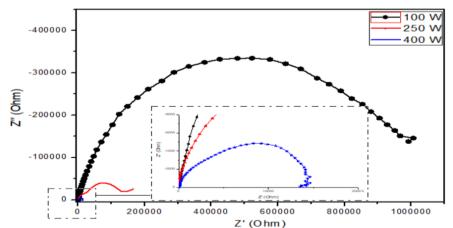


Fig. 6: the Nyquist plot for ZrO2 deposited films.

Hydrophobicity:

Fig.4: Contact angle and images of the water droplets on ZrO2 deposited films

CONCLUSION

The Zirconia coatings were successfully prepared using RF magnetron sputtering. The AFM results showed that Higher sputtering power led to a significance increase in the surface roughness, and induced a crystalline phase transition from monoclinic to cubic structure. the contact angle measurement showed that a sputtering power of 250 W produced the most hydrophobic films. the electrochemical results showed that the Zirconia films exhibited a protective anticorrosive performance. In conclusion, the results demonstrate that the sputtering power is a key deposing parameter for tailoring different properties of zirconia thin films, confirming their potential as a protective coating for biomedical metals.

REFERENCES

- [1] M. Cameron and S. George 1999 Journal/Thin Solid Films 348 90-98
- [2] M. Atik and M. A. Aegerter 1992
- [3] J. Rezek, J. Vlček, J. Houška, J. Čapek and P. Baroch 2017 Journal/Surface and Coatings Technology

100

CA (°)

[4] C. Ma, F. Lapostolle, P. Briois and Q. Zhang 2007 Journal/Applied Surface Science 253 8718-8724