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Triply Periodic Minimal Surface (TPMS)-based metamaterials 

have gained interest due to their tunable properties. However, 

accurately predicting their effective mechanical behaviour 

remains challenging. While FEM homogenization provides 

detailed insights, it can be computationally expensive. Another 

approach is that of the Mechanics of Structured Genome 

(MSG), which offers a semi-analytical alternative. This study aims 

to demonstrate that MSG can predict the effective mechanical 

properties of TPMS metamaterials with FEM-level accuracy and 

higher computational efficiency.

To represent an infinite periodic lattice, Periodic                             

Boundary Conditions (PBCs) are applied.
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To find the effective mechanical properties of the heterogenous 

metamaterial, homogenization is carried on the Representative 

Unit Cell (RUC) for FEM and on the Structure Genome (SG) for 

MSG. They represent the smallest part of the lattice that contains 

all the necessary constitutive information. 
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MSG is based on the principle of minimum 

information loss: it ensures that the 

homogenized model preserves the strain 

energy. PBCs are also applied. 

The homogenized stiffness tensor is obtained by 

volume-averaging the strain energy density. 

MSG derives the stiffness tensor 

analytically from a single, 

energy-consistent model of the structure genome.

Each averaged stress vector forms one column of the 

stiffness matrix, providing the complete anisotropic 

elastic response of the TPMS architecture.
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A comparative study was carried out on:

• Four distinct TPMS topologies

• Relative densities ranging from 10% 

to 50%
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• Both Young’s and 

shear moduli 

increase with relative 

density for all TPMSs. 

• Except for F-RD, 

Poisson’s ratio 

decreases at low 

densities, but grows 

again above 50%.

•  The MSG method 

matches FEM results 

within 1% error.

The mechanical properties of TPMS metamaterials depend strongly on 

both the topology and density of the representative unit cell.

Mechanical homogenization using the FEM and MSG methods produced 

nearly identical results, confirming MSG as an efficient and reliable 

alternative to FEM.

Future work:

• Use MSG to study the thermal properties of metamaterials.

• Investigate other topologies.

• Validate simulation results through experiments.
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Six independent linear elastic

 simulations are solved, each applying a 

single macroscopic unit strain. The resulting 

stress field is averaged over the unit cell volume.

• Gyroid & PMY: 

Highly isotropic 

across all densities; 

stiffest along the 

diagonal.

• Diamond & F-RD: 

Anisotropic at low 

densities; isotropy 

increases with 

relative density; 

stiffest along principal 

axes.
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