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Introduction Vibrational dynamics of 6BT thin films
Miniaturization is still prevalent in technology. It is generally observed that the properties
of materials at the nanoscale differ from those at the macroscale. However, the reasons stretching vibrations of ~
for this are still not fully understood, especially in the case of soft materials such as aliphatic ~CH,- and —CH; groups [~ e
liquid crystals. It seems that the main factor influencing the behaviour of spatially S ’/,\}
confined systems is the interaction of molecules with the substrate. stretching vibrations of N=C group ~J_ ) ) /
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Whether physical vapor deposition of 6BT induces
liquid-crystalline ordering in ultrathin film geometry? Fourier-transform infrared spectroscopy results.
Material Relaxation dynamics of 6BT thin films
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H,,Cq NCS  4-hexyl-4’-isothiocyanatobiphenyl (6BT) - N g -
Creating thin films via OMBD method
OMBD allows the formation of organic thin films in ultra-high vacuum by evaporating the
material whose the molecules impinge on a substrate, creating layers. > 10mm < 20nm v 40n
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pump interdigitated comb electrodes
with Pt100 sensors Broadband dielectric spectroscopy results.

Thickness of 6BT thin films | Conclusions

= Vibrational dynamics:

FTIR analysis reveals early molecular
ordering of aromatic and alkyl segments
at low film thicknesses, while —NCS
vibrations become dominant in thicker
(>40 nm) films.
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= Relaxation dynamics:
Bulk-like dynamics are reached only in
the SmE phase of ultrathin films, while
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X-ray reflectometry results. Predicted ‘smectic’ layer thickness is 21 A. P !
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