The 4th International Online Conference on Materials

3-6 November 2025 | Online

A Lignin-First Perspective on Biomass Dissolution: Molecular Dynamics Insights into Deep Eutectic Solvents

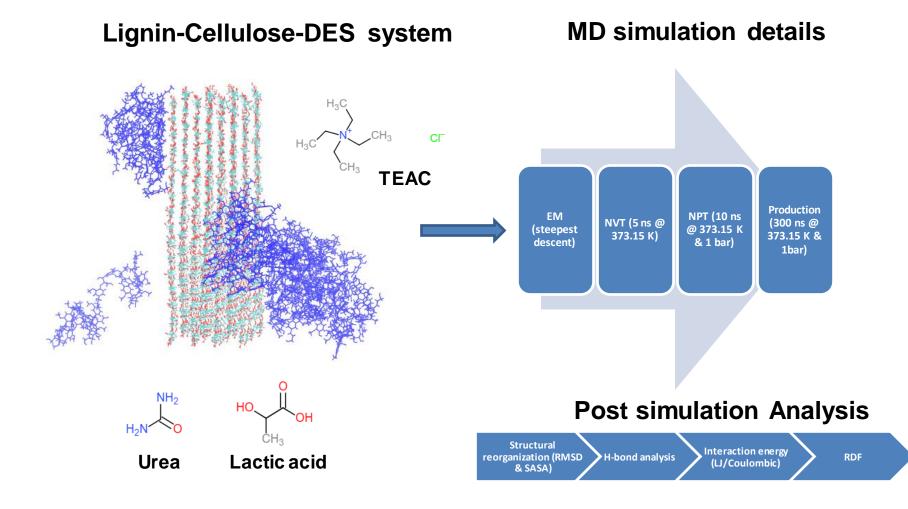
Sarmad Rizvi, Hrushikesh M. Gade

Department of Chemical Engineering, Malaviya National Institute of Technology (MNIT) Jaipur, India

INTRODUCTION & AIM

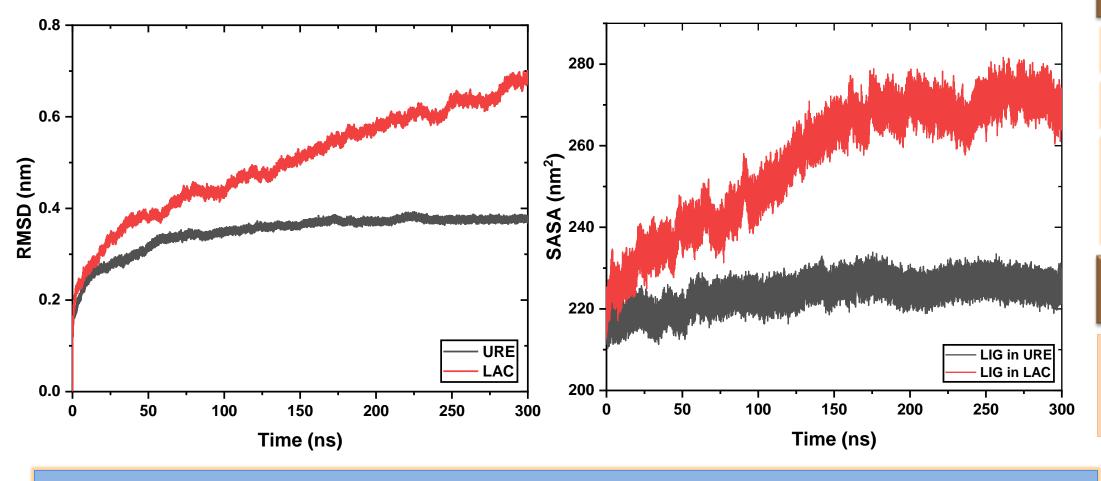
Background (Why DESs?): Lignocellulosic biomass deconstruction remains a key challenge in the transition toward a sustainable bioeconomy. Deep eutectic solvents (DESs) have emerged as green alternatives to conventional ionic liquids for biomass pretreatment due to their tunable hydrogen-bonding networks, low toxicity, and biodegradability.

Research Gap (Why TEAC?) While choline chloride (ChCl)-based DESs have been widely studied, Triethylammonium chloride (TEAC) offers a less explored yet promising hydrogen bond acceptor (HBA) framework with distinct ionic and steric characteristics.

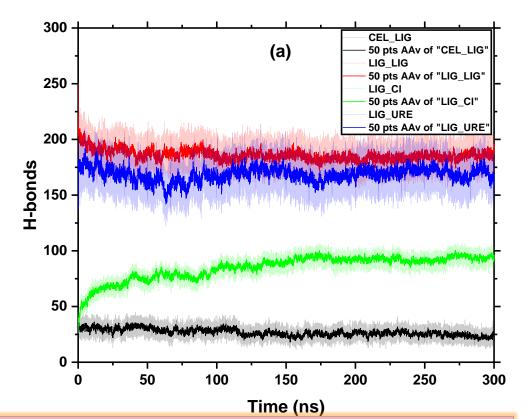

Focus Systems This study employs all-atom molecular dynamics (MD) simulations to elucidate the molecular mechanisms underlying lignin-cellulose disruption in two binary TEAC-based DESs:

1. TEAC:Urea (1:2)

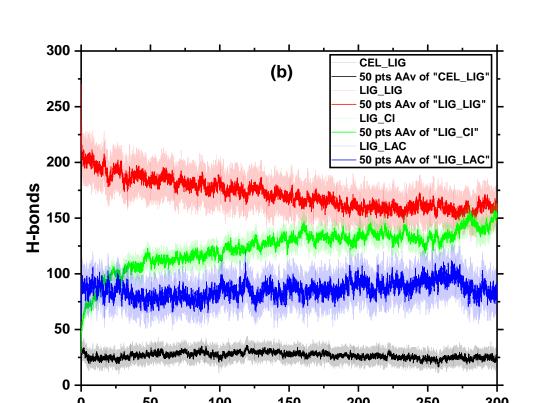
2. TEAC:Lactic acid (1:2)


METHOD

Model Systems and Simulation Details


RESULTS & DISCUSSION

Structural Stability & Delignification


Both systems preserved cellulose crystallinity. TEAC:Lactic acid showed higher lignin RMSD and SASA values, indicating enhanced delignification.

Hydrogen Bonding Networks

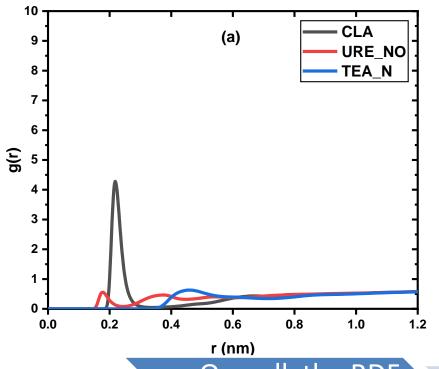
TEAC:Urea: Strong, stable urea–lignin interactions (150–200 H-bonds) form a rigid solvation shell, resulting in limited lignin disaggregation.

Although urea-based systems exhibit higher HBD-lignin bond counts (urea: ~180) than lactic acid systems (lactic acid: 60–120), delignification efficiency follows the order:

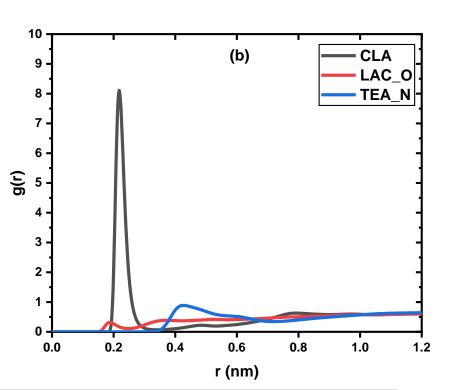
Time (ns)

TEAC:Lactic acid: Fewer but more dynamic lactic acid—lignin bonds (60–120 H-bonds), continuously breaking and reforming, enable progressive lignin release.

TEAC:Urea < TEAC:Lactic acid


Interaction Energies

Interaction (kJ mol ⁻¹)	TEAC:Urea (1:2)	TEAC:Lactic acid (1:2)
CEL-LIG (LJ / Coulombic)	-1279 / -869	-1096 / -840
CEL-TEA	-3373 / -4400	-3136 / -4998
CEL-CI-	+515 / -9996	+767 / -11,686
CEL-HBD	Urea: -2620 / -5557	Lactic acid: -2973 / -2763
LIG-TEA	-3739 / -23	-3458 / +526
LIG-CI-	+303 / -9167	+632 / -11,207
LIG-HBD	Urea: -2790 / -3236	Lactic acid: -3988 / -1891


Cellulose-Lignin:
TEAC:Urea > TEAC:Lactic
acid, confirming stronger
residual binding in the
urea system.

Lignin-DES: TEAC:Lactic acid exhibited stronger
Lignin-HBD and LigninCl- interactions,
explaining its superior delignification performance.

Radial Distribution Function

Overall, the RDF data highlight a hierarchy of interactions:

 $CI^- \gg HBD (LAC_O / URE_NO) \gg TEA_N$

CONCLUSION

TEAC:Lactic acid definitively **outperforms TEAC:Urea** in disrupting lignin—cellulose interactions.

Chloride ions synergize with lactic acid to penetrate and weaken the lignin-cellulose interface.

Impact of this study:

Findings highlight the potential of **non-choline chloride DESs** in lignin valorization and sustainable biomass pretreatment.

FUTURE WORK / REFERENCES

Future work:

Extend the MD study to ternary TEAC-based DES systems and explore the effect of temperature and water content on deconstruction efficiency.

References:

Haldar D, Purkait MK. A review on the environment-friendly emerging techniques for pretreatment of lignocellulosic biomass: Mechanistic insight and advancements. Chemosphere. 2021 Feb 1;264:128523.

Giummarella N, Pu Y, Ragauskas AJ, Lawoko M. A critical review on the analysis of lignin carbohydrate bonds. Green Chem. 2019 Apr 1;21(7):1573–95.