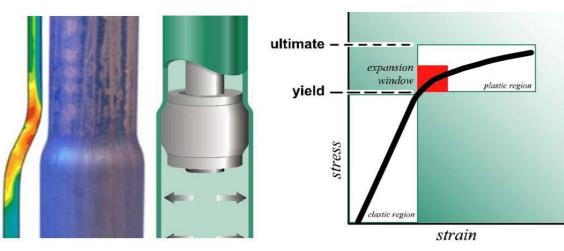


3-6 November 2025 | Online


Mechanical Property Enhancement of Tool Steel for Solid Expandable Tubular Mandrels

Sayyad Zahid Qamar, Tasneem Pervez, Farooq Al Jahwari

Mechanical and Industrial Engineering Department, Sultan Qaboos University, Muscat, Oman

INTRODUCTION & AIM

- Solid Expandable Tubular (SET) technology enables *in-situ cold expansion* of downhole tubulars for diameter restoration, zonal isolation, and well life extension.
- The expansion mandrel—a conical steel tool—undergoes severe wear, compressive, and frictional stresses during expansion.
 - **D6 tool steel** was selected for the mandrel due to its:
 - High wear and abrasion resistance.
 - Excellent dimensional stability and compressive strength.
 - Capability for tailored heat treatment and through-hardening.
- Aim: To determine the optimum heat treatment sequence (annealing, quenching, tempering) that maximizes hardness, strength, and ductility of D6 steel for SET mandrel applications.

Figure-2 Cutaway section showing expansion cone (mandrel) and aligner

Figure-1 Schematic diagram and principle of tubular expansion using a conical mandrel

Figure-3 Solid expandable tubular test rig at Sultan Qaboos
University, Muscat

METHOD

- D6 tool steel samples subjected to:
 - Annealing → Austenitizing → Air (A) or Oil (O) quenching → Single (T) or Double (TT) tempering.
- Six tempering temperatures investigated: 100°C-600°C.
- Mechanical tests performed to ASTM standards:
 - 。 Rockwell hardness (HRC).
 - Charpy V-notch impact toughness.
 - Tensile testing for yield and ultimate strength.

Microstructure and fractography studied via optical and SEM analysis to relate structure to properties.

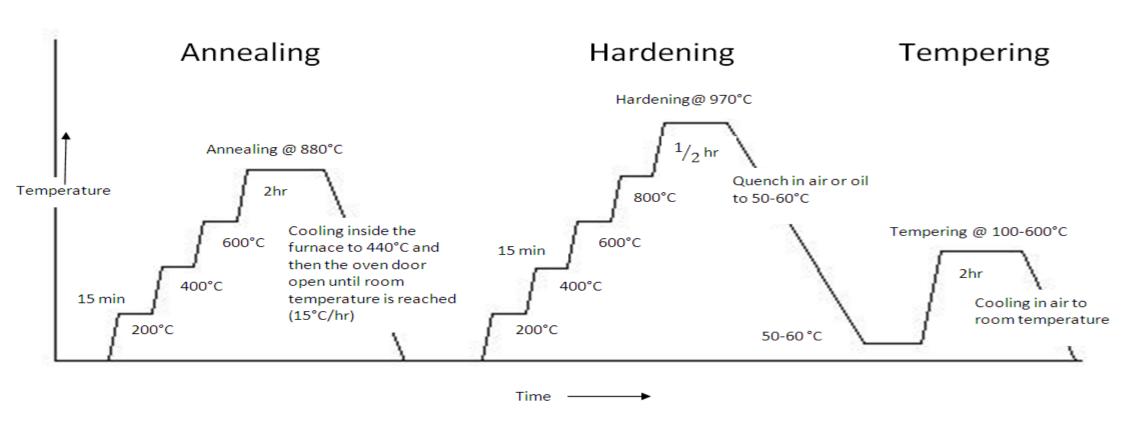
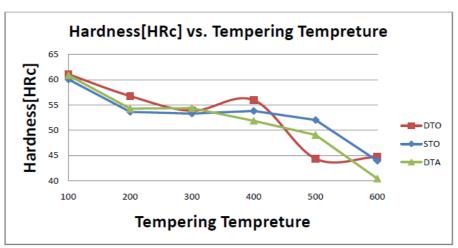



Figure-4 Graphic illustration of the heat treatment process

RESULTS & DISCUSSION

- Single tempering led to variable hardness and lower strength due to retained austenite and incomplete stress relief.
- **Double tempering (DT)** improved property uniformity and secondary hardening.
- Oil-quenched double tempered (DTO, 400°C):
 - 。 Highest hardness: 57 HRC.
 - Adequate strength but lower ductility.
- Air-quenched double tempered (DTA, 400°C):
 - Slightly lower hardness: 52 HRC.
 - Superior tensile and yield strengths with better ductility.
- Microstructural findings:
 - Fine tempered martensite with reduced retained austenite at 400°C.
 - Improved carbide distribution promoting toughness and wear resistance.

Overall: DTA-400°C provides optimal balance between hardness, strength, and ductility—ideal for repeated mandrel expansion cycles.

Figure-5 Variation of hardness against tempering temperature for different heat treatments

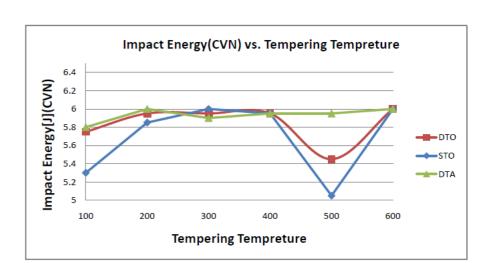


Figure-6 Variation of impact toughness against tempering temperature for different heat treatments

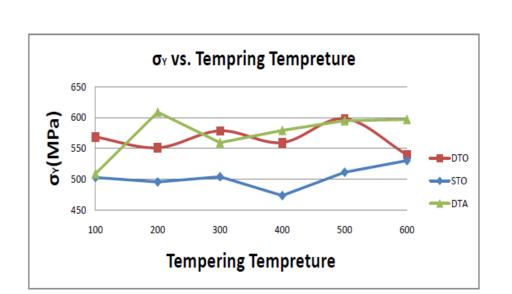
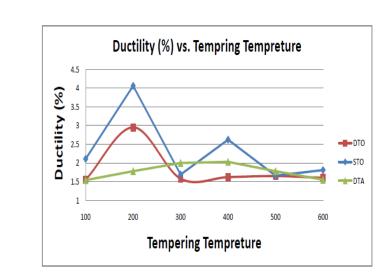



Figure-7 Variation of yield strength against temperi temperature for different heat treatments

Figure-8 Variation of ductility against tempering temperature for different heat treatments

CONCLUSION

- Heat treatment significantly influences the mechanical response of D6 tool steel for SET applications.
- Double tempering enhances structural stability and mechanical uniformity.
- Optimal condition: Air-quenched, double tempered at 400°C (DTA-400).

Recommended for **longer mandrel life**, **better dimensional control**, and **improved expansion reliability** in oilfield environments.

FUTURE WORK

- Evaluate wear and frictional behavior of treated samples under simulated downhole expansion conditions.
- Perform **finite element analysis (FEA)** of mandrel stress—strain behavior using experimentally determined material data.
- Investigate **surface engineering** options (e.g., nitriding, PVD coatings) to enhance wear and corrosion resistance.
- Extend study to alternative tool steels (e.g., D2, H13) for comparative performance mapping in SET tools.