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INTRODUCTION & AIM RESULTS & DISCUSSION

Drought monitoring and early warning are critical for managing water resources and mitigating Option A Option B Option C
hydrological risks in Mediterranean basins. Traditional meteorological indicators such as the D1 6. oG ith 5P 6 verags | event = 1200 o ) - -
Standardized Precipitation Index (SPI) capture short-term rainfall variability but often fail to - — PLE TR [ e = =00 L —
represent soil and hydrological conditions that control water availability (Sadri et al.,2018).
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The Joint Drought Index (JDI) offers an integrated framework for drought
assessment by merging precipitation and soil moisture anomalies into a single
probabilistic indicator, similar to the approach proposed by Monteleone et al.
(2021) using VHI. In this study, we assess the JDI's ability to predict
streamflow deficits using two soil moisture sources: Copernicus satellite-
derived data and DREAM model outputs.
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Tab 1. Main Characteristics of the Reservoir

The three JDIg configurations highlight the influence of soil moisture and discharge data
sources on drought early-warning skill.

Year of completion 1968 _ ) _ _ _ _
River basin F. Basento *Option A (Copernicus + observed SFl): JDIg shows slightly higher skill than SPIls, mainly
Catchment area 350 km? for mild droughts.

Multipurpose (irrigation, *Option B (DREAM + observed SFI): Overall correlation and AUC values increase,

Purpose flood control, water supply) indicating stronger soil-streamflow coupling.

Dam height 54m A T *Option C (DREAM + simulated SFI): JDI clearly dominates across thresholds. Typical
Crest elevation 536.6ma.s.. ) Comest bt AUCs are around 0.95 for (SFI<0), 0.93 for (SFI<-1), 0.96 for (SFI<-1.5), and 0.99 at the
Total storage 28.9 x 106 m3 e o) rare SFI<-2 talil, it outperforms in every scenario the previous two options and SPI only
Useful storage 23.6x 10° m? T results.

Flood control vol 5.2 x 105 m? : : : : - T :
MZiwizrﬁv\gume 5346xma;n| Takeaway: The DREAM JDI¢ configuration delivers the highest predictive skill, improving
Surface area (max) 182 km? early drought detection and serving as the foundation for ML forecasting.

Max discharge capacity 1100 m3/s R 23 Fkm

Machine learning models provided a modest performance improvement, particularly for RF
and XGB. At h = 0, both RF and XGB achieved results comparable to or slightly below the
physical JDIg model, with AUC values between 0.92 and 0.94, while LGBM showed similar
accuracy and MLP performed less effectively. At h = 1, RF slightly outperformed physical
JDlI¢ at the —1 threshold (AUC = 0.946 vs 0.931), though for threshold = 0, the physical JDlIg
model remained the best performer.

Fig 1. Location of Camastra basin and Camastra Reservoir (*)

METHOD

Meteorological, soil moisture, and discharge data were combined to assess drought propagation
and early-warning performance using the Joint Drought Index (JDI).
Three configurations of JDIg were tested to evaluate how different soil moisture sources and 10 Class
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discharge datasets influence drought prediction skill. In Option A, JDIlg was built using 08

Copernicus soil moisture combined with observed streamflow (SFI). Option B used DREAM- 081
derived soil moisture with the same observed discharge data, while Option C relied entirely on
the DREAM model, employing both simulated soil moisture and streamflow to ensure full
physical consistency within the modeling chain.
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The workflow included five main stages:
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0.2 = 5Pl (baseline) AP=0564
=== |Dls (phys baseline} AP=0.814
= |D|_RF_h0 AP=0.811

— |DI_XGB_h0 AP=0.784

= |D|_LGBM_h0 AP=0.708

0.0 7 = |0i_MLP_h0 AP=0532
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Compute SPI;and SMig in

R, combine them using a

Gaussian Copula to build
JDlg

Perform lagged correlation
and ROC/AUC analysis to
assess JDIg’s predictive
skill against SPI,

The Precision—Recall curves confirm
that JDIl¢-based ML models outperform
the SPIls baseline, especially for rarer
drought events. RF and XGB achieve

All models display a clear separation between
drought and normal conditions, with RF and XGB
achieving the most distinct class differentiation.
The physical JDIg baseline already performs well,

the highest average precision

(0,784< AP < 0.811), closely matching
ROC AUC the physical JDlg baseline

K (AP = 0.814), while MLP performs less

effectively.
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Model Evaluation A

but ML models slightly enhance discrimination,
indicating improved reliability in probabilistic
drought classification.

Qmonth aggregation

CONCLUSION

The Joint Drought Index (JDI) effectively integrates precipitation and soil moisture signals,

Splitting Strategy : improving drought early-warning skill—especially with DREAM soil data.

A 70/30 train—test split was used across all thresholds and
horizons to ensure consistency. Data were standardized
where necessary (MLP) and calibrated using per-threshold

S logistic regression.
* Discrimination

\ plots
Hyperparameter tuning (fixed):
N.B. B RF: 400 trees; min_samples_leaf = 2
Forecasting experiments | [l XGB: 600 trees; max_depth = 3; learning_rate = 0.05;
were conducted for lead | gypsample = 0.9; colsample bytree = 0.9
::gﬁfhgf ?Oz :ést’si’ 2?1&? B LGBM: 700 trees; num_leaves = 31; learning_rate = 0.05;
term drought predictability: subsample = 0.9; colsample bytree = 0.9
however, due to space B MLP: 64 — 32 — 1 dense; RelLU; 120 epochs; batch 16; .
Adam optimizer

constraints, only the h = 0 _ o
results are presented here. W Seeds: fixed across models for reproducibility

e AUC curves
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(Precision/Recall) Machine learning models (RF, XGB) further enhance short-term drought forecasts,

confirming the value of combining physical indices with data-driven methods for operational
monitoring.
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