
N.B.
Forecasting experiments

were conducted for lead

times of h = 0, 1, 2, and 3

months to assess short-

term drought predictability;

however, due to space

constraints, only the h = 0

results are presented here.
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METHOD

Drought monitoring and early warning are critical for managing water resources and mitigating

hydrological risks in Mediterranean basins. Traditional meteorological indicators such as the

Standardized Precipitation Index (SPI) capture short-term rainfall variability but often fail to

represent soil and hydrological conditions that control water availability (Sadri et al.,2018).

The Joint Drought Index (JDI) offers an integrated framework for drought

assessment by merging precipitation and soil moisture anomalies into a single

probabilistic indicator, similar to the approach proposed by Monteleone et al.

(2021) using VHI. In this study, we assess the JDI’s ability to predict

streamflow deficits using two soil moisture sources: Copernicus satellite-

derived data and DREAM model outputs.

Tab 1. Main Characteristics of the Reservoir

Fig 1. Location of Camastra basin and Camastra Reservoir (*)

(*)

Meteorological, soil moisture, and discharge data were combined to assess drought propagation

and early-warning performance using the Joint Drought Index (JDI).

Three configurations of JDI₆ were tested to evaluate how different soil moisture sources and

discharge datasets influence drought prediction skill. In Option A, JDI₆ was built using

Copernicus soil moisture combined with observed streamflow (SFI). Option B used DREAM-

derived soil moisture with the same observed discharge data, while Option C relied entirely on

the DREAM model, employing both simulated soil moisture and streamflow to ensure full

physical consistency within the modeling chain.

The workflow included five main stages:
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Index Computation

Compute SPI6 and SMI6 in 

R, combine them using a 

Gaussian Copula to build

JDI6

JDI6

SPI6 SMI6

Skill Evaluation

Perform lagged correlation

and ROC/AUC analysis to 

assess JDI6’s predictive

skill against SPI6

Machine Learning Pipeline

Splitting Strategy : 

A 70/30 train–test split was used across all thresholds and

horizons to ensure consistency. Data were standardized

where necessary (MLP) and calibrated using per-threshold

logistic regression.

Hyperparameter tuning (fixed): 

RF: 400 trees; min_samples_leaf = 2

XGB: 600 trees; max_depth = 3; learning_rate = 0.05; 

subsample = 0.9; colsample_bytree = 0.9

LGBM: 700 trees; num_leaves = 31; learning_rate = 0.05; 

subsample = 0.9; colsample_bytree = 0.9

MLP: 64 → 32 → 1 dense; ReLU; 120 epochs; batch 16; 

Adam optimizer

Seeds: fixed across models for reproducibility

Model Evaluation

• AUC curves

• PR

(Precision/Recall)

• Discrimination

plots

The Joint Drought Index (JDI) effectively integrates precipitation and soil moisture signals,

improving drought early-warning skill—especially with DREAM soil data.

Machine learning models (RF, XGB) further enhance short-term drought forecasts,

confirming the value of combining physical indices with data-driven methods for operational

monitoring.

Option A Option B Option C

The three JDI₆ configurations highlight the influence of soil moisture and discharge data

sources on drought early-warning skill.

•Option A (Copernicus + observed SFI): JDI₆ shows slightly higher skill than SPI₆, mainly

for mild droughts.

•Option B (DREAM + observed SFI): Overall correlation and AUC values increase,

indicating stronger soil–streamflow coupling.

•Option C (DREAM + simulated SFI): JDI clearly dominates across thresholds. Typical

AUCs are around 0.95 for (SFI≤0), 0.93 for (SFI≤−1), 0.96 for (SFI≤−1.5), and 0.99 at the

rare SFI≤−2 tail, it outperforms in every scenario the previous two options and SPI only

results.

Takeaway: The DREAM JDI₆ configuration delivers the highest predictive skill, improving

early drought detection and serving as the foundation for ML forecasting.

Machine learning models provided a modest performance improvement, particularly for RF

and XGB. At h = 0, both RF and XGB achieved results comparable to or slightly below the

physical JDI₆ model, with AUC values between 0.92 and 0.94, while LGBM showed similar

accuracy and MLP performed less effectively. At h = 1, RF slightly outperformed physical

JDI₆ at the −1 threshold (AUC = 0.946 vs 0.931), though for threshold = 0, the physical JDI₆
model remained the best performer.

The Precision–Recall curves confirm

that JDI₆-based ML models outperform

the SPI₆ baseline, especially for rarer

drought events. RF and XGB achieve

the highest average precision

(0,784< AP < 0.811), closely matching

the physical JDI₆ baseline

(AP = 0.814), while MLP performs less

effectively.

All models display a clear separation between

drought and normal conditions, with RF and XGB

achieving the most distinct class differentiation.

The physical JDI₆ baseline already performs well,

but ML models slightly enhance discrimination,

indicating improved reliability in probabilistic

drought classification.
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Year of completion 1968

River basin F. Basento

Catchment area 350 km²

Purpose
Multipurpose (irrigation, 

flood control, water supply)

Dam height 54 m

Crest elevation 536.6 m a.s.l.

Total storage 28.9 × 10⁶ m³

Useful storage 23.6 × 10⁶ m³

Flood control volume 5.2 × 10⁶ m³

Max water level 534.6 m a.s.l.

Surface area (max) 1.82 km²

Max discharge capacity 1 100 m³/s

Reservoir Characteristics


