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Abstract: The main purpose for this study is to provide a useful algorithm that combines 

the Maximum Entropy Method (MEM) and a computational method to predict the unique 

form of a two-dimensional maximum entropy distributions. In this paper, we present the 

application of MEM to determine the important bivariate distributions which are very 

effective in industrial and engineering fields especially in Cybernetics and internet systems. 

The combination of MEM and numerical method as a proposed algorithm is a useful 

method with the ability to model datasets which includes both missing and presence datas, 

The new algorithm provides reasonable estimations for reconstructing the target bivariate 

distributions which has maximum entropy. We examined the effectiveness of our algorithm 

to make predictions for two famus distributions. The resulting distributions have minimum 

error with respect to missing information. In fact, maximum entropy distribution is able to 

fit the known density given the prior knowledge of the target distribution. So, the MEM 

modeling procedure can be applied in present form for a variety of applications with 

precsence-only datasets. Possessing the simple and accurate mathematical formulation and 

using presence-only data, MEM has become a well-suited method for different kinds of 

distribution modeling. 

Keywords: Maximum Entropy Method, Bivariate distribution, Shannon Entropy, 

Computational algorithm, Modeling, Cybernetics. 

 

OPEN ACCESS 



 2 

 

 

1. Introduction 

The method of maximum entropy is a very effective procedure in the determination of the general form 

of a density via solving optimization problems which is introduced by Rubinstein (1999). The concept of 

maximum entropy method was first proposed by Jaynes (1957). It is a useful method of reconstructing a 

density given finite numbers of moment constraints from incomplete datasets. There are many different 

standard statistical methods for modeling missing/presence available data such as generalized linear and 

additive models (GLM and GAM). The essence of MEM is to detect the probability distribution of 

maximum entropy, subject to a set of constraints that represents our presence-only information about 

the target distribution. In other words, the MEM makes it possible to find a unique distribution that 

gives rise to these moments.  

   Shannon et al. (1948), Introduced different methods to calculate the maximum entropy distributions. 

In this paper, we apply the MEM to estimate two-dimensional distributions and different classes of 

distributions. Note that not all classes of distributions contain a maximum entropy distribution. 

   The case of maximum entropy bivariate distribution has been studied by Djafari (2011). He has noted 

that an important problem in statistics is the construction of a joint probability distribution from its 

marginals. He linked this problem to an important problem in Computed tomography (CT) as a 

reconstruction of an image from its projections. To determine ),( yxp  from )(1 xp  and )(2 yp , he 

proposed to use copula by maximum entropy method as the solution to the problem of reconstructing a 

bivariate density from its marginals. 

   In this study, we consider the determination of a two-dimensional distribution in ME problem as an 

optimization problem by introducing a combined algorithm. The new algorithm is able to resolve a non-

linear system and calculate Lagrange multipliers to determine the class of distribution. The solution of 

this non-linear system requires calculation of two-dimensional integrals. Since the integrals are complex, 

the classical and existing numerical methods such as Simpson, etc., are not efficient and the results are 

not sufficiently accurate, the first step of the algorithm is a implementation of Newton method to 

transform this system to a system of linear equations. Results show that the proposed algorithm both 

advantages, of high accuracy and good agreement with exact solutions. 

   In the present study, various distributions such as Normal, beta etc., are considered. The rest of this 

paper is organized as follows: In Section 2, we present a summary of the ME method. In Section 3, we 

will show Some preliminary numerical experiments in various classes of distributions. Sections 4 is 

devoted to conclusions.  

2. Results and Discussion 

2.1. The Principle of Maximum Entropy 

The MEM is determining the distribution that maximizes the information entropy. Jaynes’ (1957) stated 

that maximum entropy principle provides a method for solving this problem when the available 

information is in the form of moment constraints. Suppose a probabilistic system in which X  is a 

continuous random-variate  with probability )(xp , then the information entropy S  , of a distribution 

)(xp , is named Shannon entropy introduced by Shanoon et al. in 1948:  
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where ¦�â  is the support of the distribution and the information available is in the form of the normal 

constraint of probability  

 

 1=)( dxxp  

Our purpose is to find )(xp  that maximizes the information entropy S  given in Eq.(1) subject to  
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where kg  and ka  are known constants for Nk 0,...,= . 

   ME method solves this problem by maximizing the Shannon entropy subject to the given known 

constraints. The problem of Shannon entropy maximization can be solved by Lagrange multiplier 

method (Fletcher, 1991). Where 1)( N  is the number of known moments. Then , we define the 

entropy functional by introducing Lagrangian multipliers k  
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This functional is a maximum when 
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 Eq. (4) gives us the constraints defined in Eq. (2) and Eq. (5) leads to 
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where N ,...,0  are chosen so that )(xg  satisfies the constraints. The Lagrange multipliers can be given 

by 
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The Lagrange multipliers ],...,[= 1 N  should be calculated to determine the class of maximum 

entropy distributions. Our goal is determination of 1N  Lagrange multiplier from a set of nonlinear 

equations system, N  data constraints and normalization constraint. To obtain the 1N  Lagrange 

multipliers, the following set of 1N  nonlinear equations system should be solved:  
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and a globally convergent Newton solver may be used to calculate k : 
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3. Implementation and Results 

 

As MEM is not available in standard statistical packages, we applied the MEM by writting code in 

MATLAB. In this code, we have shown the performance of Newton’s method for solving two-

dimensional nonlinear equations and their quadrature numerical integration. We implemented the 

combination of two methods for the solver, one that uses the probabilistic expression for the 

constraints, and one that uses numerical technique to estimate Lagrange multipliers. To test the code, a 

number of moments were generated by the use of known distributions. We used a finite support to carry 

out the integrations for solving nonlinear system and the results have a reasonable approximation to the 

target distributions. The following examples include the new ME characterizations of many bivariate 

distributions. 

 

2.1. Bivariate Normal Distribution 

For normal distribution, we consider these constraints:  
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and .
2

3
= 1,= 1,= 210 aaa  Consider ),(=   as support of X  and Y . Starting with a bivariate 

normal distribution, the PDF is given by  
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Hence, the density that satisfies the constraints and also maximizes the entropy is  
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We apply numerical method for calculating Lagrange multipliers. The exact form of this normal 

distribution in terms of these conditions should be given as 
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Figure1 shows the plot of error between exact distribution and estimated bivariate normal distribution.  

   

Figure 1: Errors of Maximum Entropy Reconstruction of Bivariate Normal Distribution for  

,.4375][1.96,.059=  1,1][.9516,= 529],1.6427,0.9[0.9832,=
~

0 andExact  . 
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2.2. Bivariate Pareto Distribution 

Consider the known constraints of pareto distribution :
2
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and )[0,=  , the distribution that maximized entropy is in the form of  
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and it is pareto distribution:  

 

,)1)(1(=),( 2  yxyxp  

We consider 1= , we have  

 

.)2(1=),( 3 yxyxp  

See figure3 for final errors.  

 

   

Figure 2: Errors of Maximum Entropy Reconstruction of Bivariate Pareto Distribution with 

92][0.7696,2.=  66][0.5403,1.=0 exactand  . 

 

4. Conclusions  

In the present paper, an application of maximum entropy method is discussed to reconstruct bivariate 

distribution. A new algorithm is presented based on the standard Newton’s method and probabilistic 
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procedure. In addition, we define the critical boundary key points, which a new measure on monitoring 

wear condition and identifying probable wear faults are stated. The new algorithm is applied to identify 

distributions for cybernetics data as illustrated by four examples. By using this algorithm, the 

effectiveness of MEM were improved, and all kinds of bivariate distributions can be detected 

successfully. So the accurancy of this method is verified. 
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