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Abstract:  We present a lower bound on the Jensen-Shannon divergence by the Jeffrers’ 

divergence when 𝑝𝑖 ≥ 𝑞𝑖 is satisfied. In the original Lin's paper [IEEE Trans. Info. 

Theory, 37, 145 (1991)], where the divergence was introduced, the upper bound in terms 

of the Jeffreys was the quarter of it. In view of a recent shaper one reported by Crooks, we 

present a discussion on upper bounds by transcendental functions of Jeffreys by comparing 

those values for a binary distribution. 
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1. Introduction 

The Jensen-Shannon divergence JS(p; q) is a similarity measure between two probability 

distributions p and q. It is presently used in various disciplines ranging from information theory to 

electron orbital patterns. It was introduced in the descrete case as [1, 2] 
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In terms of the Kullback-Leibler divergence D(p; q) = ∑ 𝑝𝑖𝑙𝑛
𝑝𝑖

𝑞𝑖
𝑖  , it can also be expressed as  
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In addition, the square root of the JS divergence becomes a metric in that it satisfies the triangle 

inequality [3]. The JS divergence can be bounded by other divergence. For example, the variational 

distance V(p; q) = ∑ |pi − qi|𝑖  can be used both for upper and lower bounds: 

JS(p; q) ≤
1

2
V(p; q), ([1]),  JS(p; q) ≥

1

8
V2(p; q) +

1

1152
V4(p; q) + ⋯ 

             (3) 

The second inequality (lower bound) is explained in Appendix. The Jeffreys divergence  𝐽(𝑝; 𝑞) , on the 

other hand, is an old measure [4] and is defined as  𝐽(𝑝; 𝑞) ≜ 𝐷(𝑝; 𝑞) + 𝐷(𝑞; 𝑝). However bounds of JS 

divergence in terms of the Jeffreys divergence is not so much examined since the introduction by Lin 

[1]. It was shown that the JS divergence is upper-bounded by the quarter of the Jeffreys, i.e., 𝐽(𝑝; 𝑞)/4 

without mentioning whether there exists the best possible (We present an alternative proof of the Lin’s 

upper bound in Appendix). Later, Crooks [5] presented a sharper one than the Lin’s bound. In addition, 

it is stated that there is no corresponding lower bound in terms of  𝐽(𝑝; 𝑞) . In this article, however, we 

show that there exists in a limited case.  

2. Results and Discussion 

2.1. A lower bound 

We here are interested in obtaining a lower bound in terms of the Jeffreys divergence. It should 

practically be better to have both upper and lower bounds in terms of the same divergence. However, it 

was reported that there is no lower bound by Jeffreys [5]. We disprove this statement below. By a 

heuristic method (though it is easily verified), we find the following inequality: 

ln
2x

1 + x
≥

1

4
ln(1 + 2ln x), (x ≥ 1) 

             (4) 

The equality holds when  x = 1. Substituting x = pi/qi and taking an average with the probability pi , 

we have 
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Similarly for the probability 𝑞𝑖, an inequality 
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holds. Since the function ln(1 + 2x) is convex, the Jensen’s inequality tells⟨ln(1 + 2x)⟩ ≤ ln(1 + 2⟨x⟩). 

Therefore, the right-hand sides of the above two inequalities are bounded from below respectively by 
1

4

1

2
ln(1 + 2D(p; q)) and 

1

4

1

2
ln(1 + 2D(q; p)) 

Summing the both sides and applying a Jensen’s inequality with the equal weight, we reach a lower 

bound: 

JS(p; q) ≥
1

4
ln(1 + J(p; q)) 
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             (8) 

2.2. Comparison of upper bounds 

The Lin’s upper bound 

𝐽𝑆(𝑝; 𝑞) ≤
1

4
𝐽(𝑝; 𝑞) 

             (9) 

is based on the inequality of the arithmetic and geometric means, i.e., (𝑝𝑖 + 𝑞𝑖)/2 ≥ √𝑝𝑖𝑞𝑖. On the other 

hand, a sharper one derived by Crooks uses the Jensen’s inequality and it is expressed as [5], 

JS(p; q) ≤ ln [
2

1 + 𝑒−
1
2
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] 

             (10) 

It is expressed by a transcendental function of the Jeffreys divergence. Here, we pursuit yet another 

simpler one in the following.  

 

First, we recognize that the Kullback-Leibler divergence satisfies 
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             (11) 

This inequality is easily confirmed by a function xln x ≥ 1, (0 ≤ x ≤ ∞) , and thus the inequality 
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)] ≥ 1 holds. Therefore, as in the same line in [5], we can evaluate the following way: 
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where we have used the Jensen’s inequality for a concave function at the last inequality, i.e. 

〈
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In a similar way, we have  
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Putting together the inequalities (12) and (13), we have 
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1

2
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Lastly, using the Jensen’s inequality once more, we have an upper bound 

𝐽𝑆(𝑝; 𝑞) ≤
2

1 + 𝑒−
1
2

𝐽(𝑝;𝑞)
− 1 

             (15) 

This bound is similar to (10) and is expressed by a transcendental function of the Jeffreys, however it is 

simpler. For practical purposes, it is important to examine how the upper bound (15) relates to the 

previous ones. In Figure 1, we show three curves of the upper bounds in the JS-Jeffreys plane. These 
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curves correspond to inequalities (9), (10) and (15). We find that the bound (15) is sharper than Lin’s, 

however not than Crook’s. 

 

In addition, the comparison of these bounds for a binary distribution is shown in Figure 2, in which p =

(t, 1 − t) and  q = (1 − t, t) , where 0 ≤ t ≤ 1. We observe that the bounds give nearly same value 

around t=1/2, while the differences become prominent as t departs towards either 0 or 1. Among these 

bounds we find that the Crooks’ bound is sharper, however it indicates that there still seems to exist a 

sharper one for entire range.  

Figure 1. Comparison of the bound functions in the JS-Jeffreys plane: Lin (red), Crooks 

(green) and the present (blue). 

 

Figure 2. Comparison of the bounds for a binary distribution: Lin (red), Crooks (green) and 

the present (blue). 

 

4. Conclusions  

We have derived a lower bound of the Jensen-Shannon divergence in terms of the Jeffrey’s divergence 

under a condition of 𝑝𝑖 ≥ 𝑞𝑖 : JS(p; q) ≥
1

4
ln(1 + J(p; q)). Regarding the upper bound, we found a 

simpler one that is another transcendental function of the Jeffrey’s divergence along the line of the 
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previous study. It is sharper than Lin’s, but not than Crooks’. Comparisons of alternative upper bounds 

may practically be useful and it is worth seeking for a sharper one.  

Appendix  

On lower bound by variational distance 

The Kullback-Leibler divergence is lower bounded by the variational distance V, which is known as the 

Pinsker inequality [6, 7]: 

D(p; q) ≥
1

2
𝑉2 +

1

36
𝑉4 + ⋯ 

(Various bounds on a generalized Kullback-Leibler divergence was given in [8]). Therefore, an equality  

D (p;
𝑝 + 𝑞

2
) = D (q;

𝑝 + 𝑞

2
) ≥

1

8
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1
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holds, where  V (p;
𝑝+𝑞

2
) = V (q;

𝑝+𝑞

2
) = 𝑉(𝑝; 𝑞)/2 is used. Thus, for the JS divergence, the second 

inequality of Eq. (3) follows. 

An alternative proof of the Lin’s bound [1]: 

The Lin’s bound 𝐽𝑆(𝑝; 𝑞) ≤
1

4
𝐽(𝑝; 𝑞)  can be derived as follows. Let us put the ratio of the two 

probability functions as θi =
qi
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. Then, we have 
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Noting (1 + θi)
−1 = ∫ e−(1+θi)x∞

0
dx and applying the Schwartz inequality to it, 
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we have  

〈ln(1 + θi)
−1〉 ≤ −ln2 −

1

2
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Thus, we can evaluate as  
1

2
∑ 𝑝𝑖

𝑖

ln
2pi

pi + qi
≤

1

2
⋅

1

2
D(p; q) 

Similarly, we have 
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Therefore, putting together the above two inequalities, we have the Lin’s bound: 

JS(p; q) ≤
1

4
(D(p; q) + D(q; p)) =

1

4
J(p; q) 
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