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Abstract: This work discusses the development of analytical expressions for the configurational entropy of 
different states of matter. The methodology presented in this work is based on identification of the energy 
independent atomic complexes (clustering of atoms) in the mixture, through careful analysis of the main 
physical features of the system, and the calculation of their corresponding probabilities. The example of SRO in 
Nb-H interstitial solid solution is used to illustrate the choice of the atomic complexes and their structural 
changes with the composition. The possibilities of applying the same formalism to describe gases, liquids, 
glasses and solid states with the same level of accuracy are discussed. The main challenge involved in reaching 
this goal is to find a set of atomic complexes which can be used to describe, simultaneously, the basic structural 
features of liquids, glasses and solids.  If the connecting structures near the transition liquid-glass/solid are 
identified, the desired model that can be applied to all states of matter with the same accuracy and 
level of description could be developed. This work shows that it is possible to develop such a model, but a 
major theoretical and computational effort will be required.  

Keywords: configurational entropy; analytical expressions; interstitial solid solutions; 
non-crystalline state of matter, equation of state  
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1. Introduction 

The development of analytical expressions for the configurational entropy of mixing was an active 
field of research several decades ago. Empirical or theoretical expressions and methods were deduced 
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in each field of condensed matter. Several examples can be found in the literature, such as: i) the 
expressions of Flory [1] and Huggins [2] for linear polymer solutions, ii) Cluster Variation Method 
(CVM) [3] and Cluster Site Approximation (CSA) [4] for the study of order-disorder and phase 
equilibrium in alloys, and iii) the Gibbs and Di Marzio expression [5] for glasses, just to cite some of 
best known expressions in each field. Each model has its own area of applications and research. For 
example, CVM can not be applied to polymer solutions and Flory’s expression is not suitable for the 
study of order-disorder in alloys. However, the traditional methodology, based on the calculation of 
the number of configurations, found severe restrictions in the development of expressions in complex 
systems, like interstitial solid solutions or liquids and amorphous materials. Although an enormous 
amount of works has been carried out in both fields of research, the deduction of accurate analytical 
expressions for the configurational entropy of mixing has been very elusive due to the complicated 
underlying physics. While the difficulties with interstitial solutions come from the blocking effects, the 
difficulties with liquids, amorphous materials and glasses are derived from the almost insurmountable 
task of computing the number of configurations in a system without lattice periodicity. The limitations 
arise because all previous models compute the number of configurations using the lattice gas model 
under the following assumptions: i) athermal mixture or non-interacting atoms, atomic complexes, 
molecules, or associated chemical species, which leave their internal properties unaffected, ii) no 
superposition among chemical species, iii) the equivalence of all N lattice sites, and iv) the use of a 
rigid lattice with no distortion and constant volume.  

The field of research related to interstitial solid solutions is an illustrative example of the 
difficulties in computing the configurational entropy of mixing if the assumption of no superposition 
between chemical species is abandoned. Although there are several analytical expressions which can 
be used to compute the entropy of mixing in these systems, they are all approximated or limited to low 
or medium solute concentrations. In addition, they all assume a random distribution of interstitial 
atoms in the interstitial sub-lattice and, consequently, the interaction between defects is not considered 
in previous models, i.e. no SRO description is possible. Furthermore, they can not describe the 
differences between chemical and elastic blocking and their influence on the configurational entropy. 
It is important to note that there is experimental and theoretical evidence that the random blocking 
model (RBM) [6] assumed in this kind of solid solutions is not appropriate in a number of systems, 
such as hcp R-H (R=Sc,Y,Lu) [7-9], bcc Nb-H[10] and Zr-H systems [11].  

A similar situation to that of interstitial solutions, as regards the encoding of structural information 
into a compact expression, is found in liquids, amorphous materials and glasses. In these systems, the 
lack of periodicity of the atomic arrangements makes the deduction of a universal and unique 
structural description a very difficult task, leaving many questions unanswered. Consequently, the 
deduction of an analytical expression for the configurational entropy of mixing of multicomponent 
systems, valid for any non-crystalline states of matter, remains a largely unsolved problem. 

The development of such model just counting the number of configurations is an impractical idea. 
However, a recent formalism to compute the configurational entropy, based on the identification of 
energetically independent complexes within the mixture and the calculation of their respective 
probabilities, offers an opportunity to consider this proposal seriously. The importance of such an idea 
is not only academic in nature, i.e., the development of a unified description for all states of matter; it 
originates from the need to develop general expressions with the same level of accuracy for each state 
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of matter. Indeed, it would be desirable to describe liquids, glasses and solid states with the same 
model and level of accuracy so as to obtain a precise description of their physical properties and phase 
diagrams. This work shows that it is possible to develop such a model but a major theoretical and 
computational effort will be required. In order to reach this goal, a set of atomic complexes (clustering 
of atoms) which can describe, simultaneously, the basic structural features of liquids, glasses and 
solids must be found. 

The first step towards such formulation are discussed in this work, based on several inspiring 
previous works related to hard sphere systems [12-14], metallic glasses [15-18], CVM method [3] and 
a recently deduced analytical expression for interstitial solutions [10-11]. The methodology presented 
in this work is based on identification of the energy independent complexes, through careful analysis 
of the main physical features of the system, and the calculation of their corresponding probabilities. 
The examples presented in this work show that accurate, general expressions for the configurational 
entropy of mixing can be developed, even in systems with no translational symmetry.  

2. Probabilistic Description of the Configurational Entropy of Mixing  

2.1. The Model 
The entropy of a classical system with a discrete set of microstates is given by the Gibbs’ 

expression: ii PPkS ln∑−= . The index i labels all the microstates with energy Ei  (i=1,…,W) and Pi is 

the probability of finding a particular configuration of the ensemble consistent with a given energy 
value. If all microstates are equivalent with the same probability Pi=P=1/W, Boltzmann’s expression 
for the configurational entropy is deduced: S=-k.ln(P)=k.ln(W). Thus, the configurational entropy has 
usually been calculated by computing the number of configurations W.  Nevertheless, it was shown 
that this property can also be deduced by computing probabilities through the inverse problem: S=-
k.ln(P) [19]. The probability P is a conditional one and its analytical determination is usually very 
difficult. However, if the assumption of energy independent complexes in the mixture is used, the 
conditional probability can be written as a product of independent probabilities. Therefore, if the 
complexes in the mixture can be identified, the configurational entropy is written as, 

 ∑∏ −=







−=

ii

n nkkS i
iii plnpln  (1) 

where ni and pi are the numbers and probabilities of each independent complex i in the mixture, 
respectively. Thus, Eq. (1) could be a complement to the traditional method of computing the 
configurational entropy, helping in the identification and understanding of the representative physical 
features in complicated systems, such as interstitial solutions or amorphous materials. 

One point to comment here is related to the nature of the complexes existing in the mixture: 
What are those complexes? How should they be selected? The methodology presented in this work 
shows that a deep understanding of the physical properties of the system is necessary in order to 
correctly identify the complexes and their changes with composition, temperature and, eventually, 
lattice distortion. The following section will explain how to select the complex and to deduce an 
analytical expression for interstitial solutions which can describe SRO, based on the formalism of Eq. 
(1). 
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2.1 The Nb-H interstitial solid solution and the selection of the complexes   

It was previously mentioned that the source of the difficulties in modeling interstitial solutions 
arise from the site blocking effects, where the occupation of an interstitial site is prevented by the prior 
occupation of a neighboring interstitial site. There is an effective repulsion which may be chemical 
and/or strain in origin. The number of blocked vacancies inhibited for occupancy by other interstitials 
and, consequently, the size of the blocking sphere, depend on the magnitude of this repulsive 
interaction.  

The first step in modeling any interstitial solid solution is the choice of the number of blocked 
vacancies associated with each interstitial atom. The resulting structure will be called the ‘basic 
complex` in this work. In the case of Nb-H system, this selection is mainly related to the length of the 
H-H interaction. Several models are developed in the literature according to the information selected to 
deduce them.  

Figure 1. The partial configurational entropy of the Nb-H system. Comparison between 
experimental data and theoretical models available in the literature. The theoretical results 
are adjusted to the lowest experimental values. The O’Keeffe model [26] displays similar 
behavior to Boureau’s model [23]. The data for the McLellan model is taken from Ref. 
[20].  
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Fig. 1 shows a comparison between the different models for the configurational entropy of mixing 

available in the literature for Nb-H [19-26] and the experimental data from Veleckis and Edwards [27]. 
Although all these models are based on the RBM, the best agreement is achieved by the following 
three models with different approaches to describe the number of vacancies blocked by an interstitial 
atom:   
i)- the Boureau model [23] relies on a hard blocking up to second nearest neighbor, as shown in Fig. 
2.a.   There are four first-neighbor and two second nearest-neighbor vacancies blocked by one H atom.  
ii)- the O’Keeffe model [26] assumes only one interstitial site per metal atom due to the relaxation 
around a dissolved interstitial atom. 
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iii)- the model of Ref. [19], by the author of this work, is characterized by a soft blocking of four 
nearest-neighbor and two second nearest-neighbor sites, shown in Fig. 2.b. There are four first-
neighbors and two second-neighbor vacancies blocked by one H atom. Due to the interstitial lattice 
geometry, only two H atoms can block the same vacancy.  

Figure 2. Basic complex or blocking spheres in the Nb-H system for: (a) hard blocking of first 
and second neighbors. (b) soft blocking of first and second neighbors. (c) hard blocking of first 
neighbors. Empty circles: Nb host lattice atoms. Full circle: H atom. Dark square: hard blocked 
vacancies. Grey square: soft blocked vacancies.  
 

                    
                                        (a)                                               (b)                                           (c) 

 
Although the configurational entropy data are well described by the three models, they all give a 

solubility limit around H/Nb=1.5, in disagreement with the experimental value of H/Nb=1.21±0.04 
measured at 750 K [26]. This limit can be described within the model of Fig. 2.c, a hard blocking of 
first neighbors, but it is incompatible with the experimental data, as shown in Figure 1.  

Thus, there are two models for the blocking sphere, represented in Figs. 2.a and 2.b, which 
correctly describe the configurational entropy data but no the solubility limit, and one model, shown in 
Fig. 2.c, doing the opposite. What is the solution to the controversy between the solubility limit and the 
size of the basic complex?  At this point, more experimental information should be used. The critical 
composition of the miscibility gap located at a concentration of H/Nb=θc=0.31 in the phase diagram 
could be helpful in finding an explanation for this inconsistency.  

Figure 3. Location of the critical composition of the miscibility gap from different models. 
Solid line: Speiser and Spretnak. Dot line: Boureau [22] (see Fig. 2.a). Dash line: Garcés 
[19] (see Fig. 2.b). Dot-dash line: O’Keeffe [26]. Short dash line: Ogawa [19]. None of 
these models describe the experimental value of θc=0.31. 
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In order to compute the maximum of the miscibility gap through the condition ( ) 0/ 22 =∂∆∂ xcxG  

[28,29], it is necessary to know the enthalpy of formation ∆H and the free energy G of the solid 
solution. The calculations of the thermodynamic properties in the cluster field approximation by Vaks 
and Orlov [30] suggest considerable temperature dependence but an almost linear behavior of the ∆H 
versus θ in the composition range 0<θ<0.4. Consequently, the extreme condition in this range is due 
only to an extreme in the configurational entropy since the non-configurational partial molar entropy 
of mixing of the hydrogen is assumed, as usual, to be independent of temperature and composition 
[29]. Fig. 3 shows the critical composition predicted by the three most accurate models plotted in Fig. 
1. All these models give a critical composition above θ=0.4 adding more confusion to the unexplained 
physical behavior of H in the Nb-H system. The following question arises again from these results: 
What is the solution to the controversy between the solubility limit and the length of the H-H 
interaction, now adding the wrong description of the critical composition of the miscibility gap?   

To answer this question it is necessary to develop an adequate theoretical tool which can include 
SRO and the experimental evidence not taken into account by all previous models. A simple, general 
analytical expression overcoming the previous cited limitations has recently been deduced [10,11]. 
The expression, suitable for the treatment of interstitial clustering and SRO, is applicable to tetrahedral 
or octahedral interstitial solutions in any crystal lattice and for all interstitial concentration. The model 
for Nb-H developed in Ref. [10] provides the basis for an explanation of unsolved controversies in this 
system, such as: 1) inconsistencies between the solubility limit and the size of the basic complex, i.e. 
the size of the blocking sphere, 2) the inaccuracy of the different models for the configurational 
entropy, 3) the critical composition of the miscibility gap, 4) the length of the H-H interaction, 5) the 
nature of the α- and α’-phases and 6) the structural relation between the disordered and the ordered 
phases observed at low temperatures and compositions θ=H/Nb>0.75. In addition, there are several 
experimental results that can not be explained by the RBM, such as: 1) different experimental [31,32] 

and theoretical [33,39] results suggest that the H-H interaction is characterized by a repulsive 
interaction extending out to the third or fourth shell of the interstitial lattice and by an elastic 
interaction energy outside the radius of repulsion. However, these results contradict the assumptions of 
the RBM characterized by H-H repulsion up to second nearest neighbors, 2) there is experimental 
evidence of SRO at very dilute H concentrations (< 1 at.% H) [40]) and in the α'-phase [41,42].  

None of these experimental results can be explained by using the RBM or even the CVM methods 
[39]. This fact shows that the underlying physics of the Nb-H system is still not properly identified and 
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the complexes selected by previous models are not representative of the H behavior. It is clear from a 
comparison between the models shown in Figures 1 and 3 that the basic source of the controversies 
related to the Nb-H solid solution is the size of the basic complex and its change with the H 
concentration.  

A simple, general expression overcoming the previously cited limitations has recently been 
deduced [10,11]. The model is based on the following assumptions. Due to interstitial repulsion, the 
set of vacancies is divided into two different species: f

vn  free vacancies and b
vn  blocked vacancies 

associated with each interstitial atom. The blocked vacancies do not participate in the mixing process 
as they are excluded for occupancy by other interstitial atoms. Therefore, it can be assumed that an 
interstitial complex of size r0 = b

vn +1, called basic complex in this work, is formed in the solid solution. 

It is important to note that interactions between basic complexes can be developed for low temperature 
or high interstitial concentrations, giving rise to SRO with the formation of new interstitial complexes 
of size r times the number of interstitial atoms inside them. A small interaction could remain but its 
magnitude is not enough to create a new kind of complex. Consequently, the complexes are considered 
in the present model as energy independent entities, i.e. no significant interactions or correlations are 
assumed between them. Therefore, the original problem could be reinterpreted as a random mixture of 
independent complexes of different sizes: free vacancies of one lattice site size and ni interstitial 
complexes of sizes ri formed by the interstitial atom and their respective blocked vacancies. The 
following expression is deduced by applying Eq. 1 [10],  
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where the indices i and j label all the interstitial complex and free vacancies in the mixture. β is the 
number of interstitial sites per metal atom, θi=ni /N is the composition of each independent complex in 
the solid solution.  

How can the controversies previously cited be solved using Eq. 2? The first step is to find the size 
of the basic complex satisfying the solubility limit, given by β/r0. The experimental solubility limit of 
the solid solution, H/Nb=1.21±0.04 [26], can only be described if a basic complex of size r0 = 5 is 
assumed, see Fig. 2.c, as β=6 in a bcc lattice. This assumption is incompatible with the experimental 
data for the configurational entropy, as shown in Fig. 1. However, a combination of basic complexes, 
arising from SRO, can also describe this limit. The simplest complex fulfilling the previous condition 
is a pair of H atoms with size r = 10, as shown in Fig. 4.a.  

Figure 4. Composed objects formed in the solid solutions due to SRO: (a) a pair H-Nb-H with the 
respective blocked vacancies and (b) a double pair (the blocked vacancies are not shown). Empty 
circles: Nb host lattice atoms. Full circle: H atom. Squares: blocked vacancies. 
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The configurational entropy derived from Eq. (2) for a mixture of vacancies, isolated H atoms and 

pairs is,  
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In this expression β = 6 is the number of tetrahedral interstitial sites per metal atom in a bcc lattice, 
θ1 is the composition of isolated interstitial atoms and θ2 the H pair concentration, verifying the 
relation θI=θ1+2θ2. The growth of pairs has been modeled by the following sigmoid function: 

ICBe
A θθ θ )(1 −−+

=  (4) 

The parameters are: A=0.10, B=20 and C=0.21. The sigmoid growth with A=0.10 means that an 
amount of 18% of the H interstitial atoms are located in pairs. The partial configurational entropy is 
computed numerically and plotted in Fig. 5. The result shows an excellent agreement with the 
experimental data, giving a critical composition at θc=0.33, as Fig. 6 shows. The critical composition 
of the miscibility gap is not correctly described. Therefore, what is the H physical behavior in this 
system that it is possible only to explain accurately the configurational entropy? 

Figure 5. The partial configurational entropy of Nb-H. Comparison between experimental 
data and theoretical models presented in this work. Solid line: a random mixture of 
vacancies, isolated H atoms and pairs with hard blocking of size r0 = 5 and r = 10, 
respectively. Dash line: random mixture of vacancies and random H atoms with hard 
blocking of size r0 = 4. Dash-dot line: random mixture of vacancies and random H atoms 
with hard blocking of size r0 = 5.  
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A major problem in materials science is the description of the critical points. Sophisticated and 

powerful methods such as CVM fail in these areas due to the huge size of the basic cluster necessary to 
describe the long-range fluctuations near the critical point. But, what could the description of the 
current model be if we consider that in the vicinity of the critical point the basic complex changes with 
the composition? The result of θc=0.33, very close to the experimental critical composition, points out 
the fact that the miscibility gap could be related to an additional structural process, e.g. the clustering 
or ordering of pairs beginning at a critical composition θc>0. The present methodology can be applied 
easily to modeling of the pair clustering if all the pairs in the mixture are assumed to form double or 
triple pairs. For this purpose, the same parameters obtained from fitting Eq. (4) to the experimental 
data are used.  

The configurational entropy expression for a mixture of vacancies of size r=1, isolated H atoms 
with size r=5 and double pairs with size r=20 fulfilling the relation θI=θ1+4θ4 is, 
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The same expression for triple pairs with size r=30 fulfilling the relation θI=θ1+6θ6  is, 
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Fig. 6 shows the location of the partial configurational entropy maximum with the amount of 
double or triple pairs in the mixture. The model gives a critical composition for the miscibility gap of 
θc=0.307, in remarkable agreement with the experimental value of θc= 0.31. This result could resolve 
the controversies regarding the nature of the disordered phases by characterizing the α’-phase as a 
random mixture of isolated H atoms and pairs, double and triple pairs.  

Figure 6. Location of the critical composition of the miscibility gap with the amount of 
pair clustering. An extreme is found at θc=0.307 if all the pairs are assumed to form double 
or triple pairs, in remarkable agreement with the experimental value of θc=0.31. 
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The possibility of including SRO in the entropy formalism allows an explanation for several 

controversies in Nb-H giving a physical picture different to the usual model based on a random 
mixture of H atoms. The current model makes it possible to solve the contradictions between the 
length of the H-H interaction and the experimental solubility limit. Moreover, it proposes that the α-
phase could be formed by a random mixture of H atoms and H-Nb-H pairs, and the α`-phase is 
characterized mainly by double or triple pairs in addition to H interstitials. The location of the 
maximum of the miscibility gap is related to the formation of double or triple pair in the solid solution. 
It is also proposed in the current model that the double or triple pairs configuration could be 
interpreted as the seed for the ordered phases observed experimentally for H compositions greater than 
θ=0.75. The interested reader can find details of the relation between pairs and the ordered phases in 
Ref.  [10].   

 

3. Non-crystalline states of matter  

The example of interstitial solutions showed that Eq. (1) provides a useful framework to deduce an 
analytical expression for the configurational entropy if the basic complex, or basic local structures, vs. 
H concentration are identified. The liquid and glasses are two particular, very elusive systems due to 
their lack of periodicity. Is it possible to describe them using the same structural model? There is a 
great deal of research being carried out in an attempt to answer that question. The results are so 
abundant that it is almost impossible to encode all the information in an equation. Although it is not 
the purpose of this work to deduce such an expression, the next sections will analyze the possibilities 
of finding a common structural model on which to apply the formalism of Eq. (1).  

The quantitative description of local structure is a requirement when studying amorphous systems, 
such as granular matter or glasses. While granular structures are disordered, metallic glasses displays 
various degrees of structural ordering beyond the short range.  This means that a unique ideal structure 
where all the grain positions are uniquely assigned does not exist. There are a very large number of 
structures that have equivalent global properties (packing fraction, mechanical properties, etc.) but 
differ in the way the grains are arranged locally. The identification of the basic motif or structures is 
fundamental in order to apply the current methodology to compute the configurational entropy. 
However, how can different forms of disordered configurations with the same energy in systems with 
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no translational symmetry be characterized? The following sections will outline an answer to this 
question. 

3.1 Interacting gas modeling  

One of the simplest systems to which the formalism of Eq. (1) can be applied is a gas composed 
by n weak-interacting particles with a finite volume v located in a reservoir of volume V. If chemical 
interaction is strong between them the situation could become not simple. Indeed, new chemical 
species or atomic complexes could be formed and their identification and counting increase in 
complexity with increasing density, worsening in the case of liquid and glasses or amorphous 
materials. If the interaction is small with a magnitude too low to create a new kind of complexes, the 
probability of finding one particle in a volume V is, 

ξ−−
=

nvV
nvp  (7) 

The corresponding entropy from Eq. (1) is, 









−−

−=
ξnvV

nvknS ln  (8) 

where ξ(T,V)  is a function of the distribution of the non-available holes among the n particles in the 
volume V. ξ(T,V)  is a complicated function to compute for high density gases, liquid or amorphous 
materials. There are several theories on how to compute it approximately and an enormous number of 
expressions, theoretically or empirically deduced, for the equation of state (EOS) of this system. 

To obtain the EOS from Eq. (8) it is necessary to compute the energy and the energy of the 
system. The small interaction among the complexes could be assumed, in a simple approximation, to 
be proportional to the packing fraction ρ=nv/V, thus VaVnvE // =∝ . Therefore, the free energy for 
this simple system is, 



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The pressure P is, 
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 (10) 

 
Clearly, the Van der Waals EOS is obtained for this simple model if nv+ξ = b and 0/ =∂∂ Vξ . 

The volume b is called excluded volume and is usually assumed to be independent of the density. 
Rusanov was able to explain the value and meaning of the volume b [46-48]. This author proved that 
the particular constant value b = 4v, assumed in the Van der Waals EOS, corresponds to a linear 
dependence of the excluded volume on the packing fraction.  In any case, to obtain an accurate EOS 
for all densities it is necessary to know the clustering degree on the fluid density, i.e. ξ(ρ). The solution 
to this problem is still elusive despite countless efforts.  
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In spite of its simplicity, the Van der Waals EOS gives a qualitative description of the P-V-T 
behavior of the substances. Eq. (10) shows why the van der Waals model is not appropriate for 
rigorous quantitative calculations. Indeed, despite the success of some empirical equation with 
adjustable parameters, Eq. (10) shows the root causes of the inaccuracy and limitations of most EOS 
available in the literature. They all neglect the term V∂∂ /ξ , an important contribution for high density 
systems like dense gases and liquids. The advantages of deducing an EOS from Eq. (1) is evident as 
the approximations used and the limitations are clearly identified.  

A different approach to describing the dependence of the excluded volume on the packing 
fraction, based on an equal-sized hard sphere system, will be presented in the next section. 

3.2 Equal-size Hard Sphere System  

The hard sphere system is a very simple model for fluids in general. The current scientific 
literature reports that the equal sized hard sphere system has been used as a model for liquids, crystals, 
colloidal systems and, in particular, was very successful in modeling granular systems and powders. 
See Refs. [43-45] and references therein, for reviews in these fields. 

An enormous amount of research has been carried out in an attempt to characterize the different 
basic complexes of disordered configurations in systems with no translational symmetry. Of all these, 
the results of Aste et al. [12-14] are relevant to this work. These authors found a universal relation 
fulfilled by all idealized granular materials. The same approach is adopted in this work to find an 
analytical expression for the configurational entropy of a system composed by equal sized hard 
spheres.  

The model of Aste et al. model is based on a subdivision of the total volume in cells using the 
Voronoi partition. The authors showed that the local volume distributions of granular packing of 
monodisperse spherical grains are described very well by a universal distribution function, i.e. k-
Gamma distributions. In addition, the volume distribution collapses on the same curve when the data 
are plotted vs (v-Vmin)/(<v>-Vmin) instead of v. The distribution was deduced using statistical 
mechanics and a very simple hypothesis that the Voronoi cells in the systems have k degrees of 
freedom associated with their volumes. k is a structural parameter which depends on the system phase. 
The main advantage of this model is that the parameter k describes all the crystalline states of the hard 
sphere system, i.e. from dilute gases to a jammed state. There is a simple dependence of k vs ρ (ρ is the 
packing fraction) with a sharp transition at the random close packing limit ρ  0.645. 

The formalism of Section 2 is applied in this work to this idealized system. The identification of 
the basic complex or motif is fundamental to the application of the current methodology to the 
computing of the configurational entropy. For this system such structures are the Voronoi cells with k 
degrees of freedom and volume v. Therefore, the original problem could be reinterpreted as a random 
mixture of independent complexes of different volumes. We need only to find the number of each 
complex with a given cell volume and their probability as a function of the total volume VT. 
Consequently, in the present approach, only volumetric effects are taken into account.  

The volume distribution of the Voronoi cells for a given k is the k-gamma function in the variable 
v-Vmin. In this model, the probability pi of a cell with volume vi is,   
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The k-gamma function is characterized by a shape parameter k and a scale parameter (<V>-Vmin)/k, 
where Vmin is the minimum available volume. The total number of complexes is N, equal to the number 
of hard spheres in the system. The number of each one of the complexes with volume vi is Npi. Finally, 
the expression for the configurational entropy of N hard sphere system is: 

 

∑−=
i

pkNS ii pln  (12) 

This expression must be analytically worked in order to get a useful expression to compare with 
previous expressions and to deduce the equation of state for this idealized system.  

3.3 Metallic Glasses  

The hard sphere system is a nice example showing the benefit of using Eq. (1) once the physics 
and the energy independent entities in the mixture are identified. There is another system suitable for 
application of the same formalism of Eq. (1). This is the bulk metallic glasses (MG) system. Similarly 
to the interstitial solid solution, the basic complexes change their numbers and structural features with 
the solvent concentration, and consequently, their probabilities should be computed accordingly. The 
main task in this system is to compute these quantities while describing, at the same time, the 
maximum amount of experimental data.  

The metallic glasses have at least two different atoms with a significant size difference and have 
elements with negative heat of mixing, so the structures will try to maximize the number of unlike 
bonds. The atomic structure of MG is characterized by randomness but it was also shown to have 
significant SRO and medium-range order (MRO). The origin of both kinds of order has remained 
unexplained for many years. In addition, MG have exceptionally low volume changes upon fusion, 
often less than 0.5%, a result firmly established as a property of metallic glasses [18]. 

Several models have been proposed in the past like the dense random packing (DRP) model due to 
Bernal [49]. The model is based on monoatomic systems and gives a maximum atom packing fraction 
about 0.64, too low for modeling real MG. There is other “free volume” model [50], but this does not 
describe the atomic structures. However, one very insightful method was recently proposed by Miracle 
to model metallic glasses based on efficient atomic packing [15-18]. The most important feature of this 
model, called the efficient cluster packing (ECP) model, is that it gives a clue to the atomic structure in 
function of the composition of the system. Indeed, the main structural properties are described 
efficiently by the Miracle model. 

For the ECP model, the MG consists of clusters characterized by specific identities defined from 
composition and relative atomic sizes. The basic structure is formed by a dense packing of efficiently 
packed solute-centered atomic clusters with solvent atoms only in the first coordination shell. The 
coordination numbers 9, 10, 12, 15 and 17 are the most common and account for almost all binary 
metallic glasses. The reason behind this behavior remains unexplained. See Fig. 1 of Ref. [17] for 
details. The MG structure is modeled by placing these characteristic solute-centered clusters on sites of 
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a distorted fcc-like arrangement. Adjacent solute-centered clusters do not overlap and so do not share 
solvent sites. Solute atoms can occupy any of the four structural site characteristics of the ECP model, 
but solvent atoms can only occupy sites surrounding the solute atoms. In addition, all solvent sites 
must be occupied. This model establishes a structural progression of different kinds of clusters 
according to the solute concentration. ECP is able to predict the minimum glass-forming solute 
concentration and describe with a small error the density of MG. 

In order to apply the formalism of Section 2 to MG, it is necessary to select carefully the basic 
complex that correctly describes the main physical features mentioned previously. Encoding this 
information is not easy, and much remains to be done prior to obtaining an analytical expression for 
the configurational entropy of mixing of MG. The main problem in applying the present formalism to 
MG systems within the ECP model is to know the distribution of empty space arising from the 
distorted fcc structure associated with each complex, in a similar fashion to the model of Aste and 
Coniglio. However, the ECP model is able to describe the density of MG with great precision. 
Therefore, there should be a way to include the empty space and the work of Aste and Coniglio could 
be inspiring. This work is under development but more experimental and theoretical information is 
necessary to advance significantly in this field. 

4. Discussion  

The examples of Section 3 show that the source of limitations to develop accurate expressions for 
the configurational entropy in systems with no translational symmetry is the correct treatment of the 
excluded volume, i.e. the atomic clustering change with the fluid density. Two different approaches to 
describing this dependence are given in the previous sections: i) the example of weak-interacting gases 
based on the excluded volume model. The Van der Waals EOS is derived, the approximations used 
and the limitations are clearly identified and the corrections to improve the accuracy of the EOS is 
shown, and ii) the Aste and Coniglio model including the empty space, i.e. the associated volume, as a 
part of the basic complex. Neither approach is easily applicable to systems with more than one 
component. The clustering degree, chemical or geometrical, and the associated volume should be 
included in the description. The example of H ordering in Nb-H system offered an alternative to the 
traditional methodology to describe the clustering of H atoms, i.e. SRO, through the structural changes 
of the basic complex with composition. Can this formalism be applied to the study of the different 
states of matter? For this to be possible, a basic complex characteristic of each state of matter must be 
found. How can it be chosen and how does it change with the density and composition? To answer 
these questions, the main features of the each state according to the model under current development 
will be summarized below. 

i) Gases: the basic complex should describe the main feature of gases, that is, the high particle 
mobility in addition to the excluded volume. Eqs. (10) and (12) show two different treatments for the 
excluded volume. However, these expressions neglect an important contribution, mainly for dense 
gases and liquids: the influence of the interaction between the particles in the distribution of interstitial 
holes. In addition, the volume v of each individual particle or molecule should be carefully identified 
as it could have a associated volume due to internal movement. For example, a gas could have an 
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associated volume as a sphere surrounding it, as usually considered, or it could have an associated 
volume describing the mean free path. 

ii) Liquids: the clustering of particles is essential to any description of this state of the matter. The 
resulting basic complexes could be individual particles, tetrahedral/pyramids or octahedral clusters, all 
of which should include the associated volume. The configurational entropy of the liquid state can be 
computed from Eq. (1) if the structures of the basic complexes in the liquid state are assumed to be 
individual particles, tetrahedron and pyramid, as shown in Fig. 7.  

Figure 7. Possible structures of the liquid state 

                      
 

The resulting expression from Eq. (1), as a first approximation to the liquid state is, 
 









++

+







++

+







++

=−
554411

55
5

554411

414
4

554411

11
1 lnlnln

vvv
v

vvv
v

vvv
v

kN
S

θθθ
θθ

θθθ
θθ

θθθ
θθ   (13) 

 
θ1, θ4 and θ5 are the composition of each basic complex. The expression should be considered only 

as a starting point, just for discussion of the possibility of describing the liquid state with the present 
formalism. In addition, it is applicable to liquids with only one atomic species. For multicomponent 
liquids, it should be taken into account that the composition of each basic complex is a new 
independent entity. 

It is possible that the geometrical configuration of the basic complexes describing the liquid state 
changes with density. Two possible structures near the transition liquid-glass/solid are shown in Fig. 9. 

Figure 8. Possible connecting structures between liquid state and MG and solids  

                                   
(a)                       (b) 

            
The geometrical arrangement schematized in Fig. 9 are common to the structures of MG with 

coordination numbers 9, 10, 12, 15 and 17, as shown in Fig. 1 of Ref [17]. They are also observed in 
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fcc and bcc structures. While the structure of Fig. 9.a is found along the [111] compact direction in an 
fcc structure, the structure of Fig. 9.b can be observed along the [001] direction in a bcc structure. In 
this work, it is proposed that the structure shown in Fig. 9 could be considered as the required 
connecting structure between the liquid state and the MG and solid state. 

iii) Glasses: the ECP model could be a starting point as it gives the changes with composition of 
the different complex. However, the excluded volume, a priori, should be included in the description. 
This work is currently under development. 

iv) Solids: Inspired by the CVM method, the basic complex shown in Fig. 9 could be used to 
describe the disordered state. The ordered state in this approach could be described by an association 
of basic complexes, similarly to the case of H SRO in Nb-H interstitial solution. 

To encode all of this information in an equation is no trivial task. Moreover, the enormous amount 
of experimental and theoretical results makes such development a lengthy process. However, if the 
attempt is successful and the structures shown in Fig. 9 represent the real connecting basic structure, 
the desired model that can be applied to all states of matter with the same accuracy and level of 
description could be achievable. 

5. Conclusions  

This work presents a formalism to calculate the configurational entropy of mixing alternative to the 
usual method of counting the number of atomic configurations. The traditional methodology found 
important restrictions to encode the physical information into compact expressions in complex systems 
such as interstitial solid solutions or liquids and amorphous materials. The methodology presented in 
this work is based on the identification of the energy independent complexes in the mixture, through a 
careful analysis of the main physical features of the system, and the calculation of their corresponding 
probabilities. The H ordering in Nb-H is used to illustrate the change of the atomic complexes with the 
H concentration. The possibility of including SRO in the entropy formalism allows an explanation for 
several controversies in Nb-H giving a physical picture different to the usual model based on a random 
mixture of H atoms. The current model proposes that the α-phase could be formed by a random 
mixture of H atoms and H-Nb-H pairs, and the α`-phase is characterized mainly by double or triple 
pairs in addition to H interstitials. In addition, it explains unsolved controversies in this system related 
to the length of the H-H interaction, the critical composition of the miscibility gap and the relation 
between the disordered and the ordered phases. 

The methodology is applied to systems with no translational symmetry. It is shown that the source 
of limitations to develop accurate expressions for the configurational entropy in these systems is the 
correct treatment of the excluded volume. Three examples are analyzed:  

i) a weak-interacting gas. The Van der Waals EOS is deduced and the root causes of the inaccuracy 
and limitations of this EOS are shown. It neglects an important correction to the repulsive (entropic) 
term in system with high density, like dense gases and liquids.  

ii) non.-interacting equal-size hard sphere system. An expression for the configurational entropy is 
deduced based on the Aste and Coniglio model for granular systems. This model includes the empty 
space as associated volume to each hard sphere.  
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iii) liquids. The clustering of particles is essential to any description of the liquid state. A simple 
analytical expression for the configurational entropy of the liquid state was computed assuming 
different clustering degree. The expression should be considered only as an approximation, just for 
discussing the possibility of describing the liquid state with the present formalism. It is possible that 
the geometrical configuration of the basic complexes describing the liquid state changes with density. 
In this case, the expression should be changed accordingly.   

If the connecting structures near the transition liquid-glass/solid are identified, a set of atomic 
complexes changing under densification can be defined. Therefore, the desired model that can be 
applied to all states of matter with the same accuracy and level of description could be developed. 
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