The 9th International Electronic Conference on Water Sciences

11-14 November 2025 | Online

Microplastic-Microalgae Interactions: Effects on Nutrient Uptake and Growth of Chlorella vulgaris

Paulo Sousa¹, Cátia Sousa^{1,2,3}, Manuel Simões¹

¹LEPABE, ALiCE, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal ²ISEP/P.PORTO, School of Engineering, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015, Porto, Portugal ³CIETI, ISEP/P.PORTO, School of Engineering, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015, Porto, Portugal

INTRODUCTION & AIM

Microplastics (MPs) are pervasive contaminants in wastewater (WW), where conventional treatments fail to effectively remove them, contributing to environmental pollution and aquatic ecosystems risks¹. As a solution, microalgae-based systems offer a sustainable and multifunctional alternative with efficient nutrient removal and valuable biomass production, for a high biotechnological interest¹. However, their performance in MP-contaminated environments remains poorly understood, especially in WW systems.

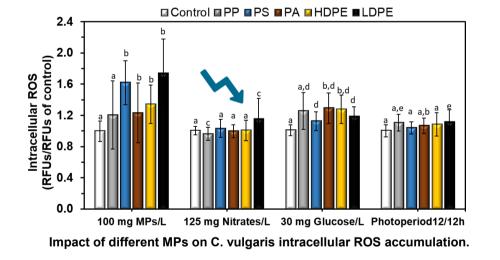
Evaluate the physiological responses and bioremediation efficiency of *C. vulgaris* exposed to five common MPs, namely polypropylene (PP), polystyrene (PS), polyamide (PA), low-density polyethylene (LDPE), and high-density polyethylene (HDPE), under different synthetic WW conditions: nitrogen and organic carbon availability and photoperiod regimes (12/12 h light/dark *versus* continuous light - 24 h light).

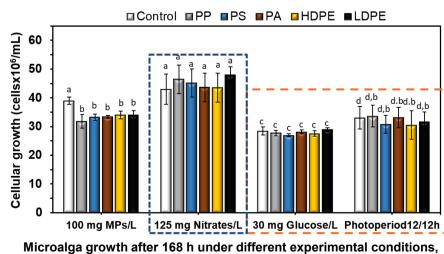
RESULTS & DISCUSSION

SWW conditions **strongly modulated** the MPs impact

showing high variability in metabolic response.

Sterases activity.

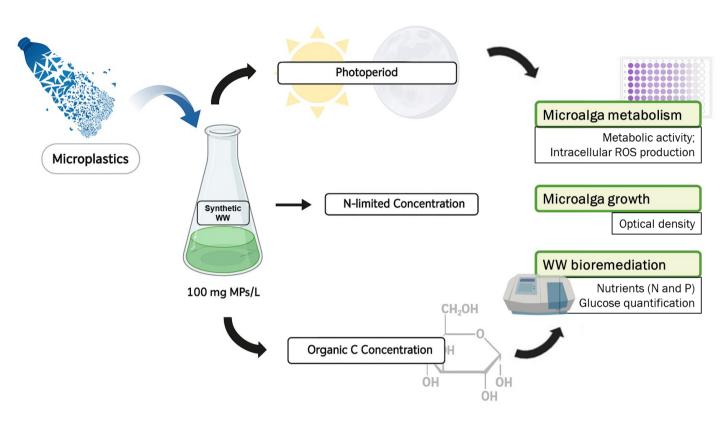

Sterases activity.

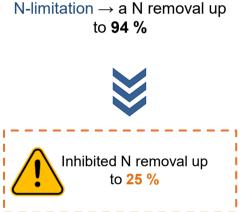

Captured a point of different MPs on C. vulgaris esterase activity.

Changing SWW conditions

decreased intracellular ROS levels compared to 100 mg MPs/L

N-limitation → **promoted** a **higher** growth and biomass production.


Carbon limitation \rightarrow inhibited *C.* vulgaris growth by **27** %.

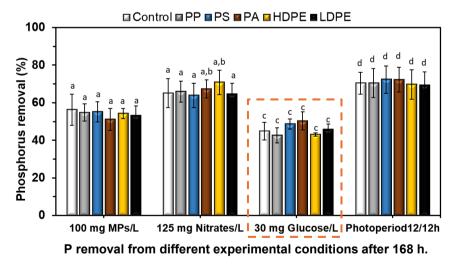

licroalga growth after 168 h under different experimental conditions, in the presence of 100 mg MPs/L.

CONCLUSIONs

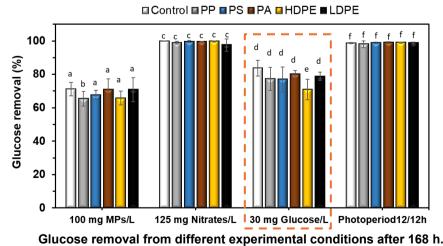
- MPs are strongly influenced by WW composition and environmental conditions, with a wide heterogeneity of response by microalgal cells.
- C-limitation is the most critical stress condition, compromising the microalgaperformance.
- N-limited environment promotes microalgal adaptive response.
- ✓ C. vulgaris resists MP stress, reinforcing its potential for efficient and eco-friendly WW treatment systems.

METHODS

Control PP PS PA HDPE LDPE


100

80


100 mg MPs/L 125 mg Nitrates/L 30 mg Glucose/L Photoperiod12/12h

N removal from different experimental conditions after 168 h.

N-limitation and 12h/12h photoperiod → P and glucose removal efficiency **remained high** across all MPs

→ P removal was inhibited by ~20 %.
 → Strong negative impact on metabolism, growth, and bioremediation.

Glucose availability was critical for sustaining antioxidant defenses and repair mechanisms under MP stress.

REFERENCES

¹ Sousa, P.M.S. et al., Microalgae for microplastic removal from water and wastewater: a review. Environmental Chemistry Letters, 2025, 23, 611–648.

