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Abstract: We take a closer look at the structure of bivariate dependency induced by a pair 

of predictor random variables (X1, X2) trying to synergistically, redundantly or uniquely 

encode a target random variable Y. We evaluate a recently proposed measure of 

redundancy based on the Gács and Körner's common information (Griffith et al., Entropy 

2014, 16, 1985–2000) and show that the measure, in spite of its elegance is degenerate for 

most non-trivial distributions. We show that Wyner's common information also fails to 

capture the notion of redundancy as it violates an intuitive monotonically non-increasing 

property. We identify a set of conditions when a conditional version of Gács and Körner's 

common information is an ideal measure of unique information. Finally, we show how the 

notions of approximately sufficient statistics and conditional information bottleneck can be 

used to quantify unique information. 
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bottleneck 
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1. Introduction 

We take a closer look at the structure of bivariate dependency induced by a pair of predictor random 

variables (RVs) (X1, X2) trying to encode a target RV Y. The information that the pair (X1, X2) contains 

about the target Y can have aspects of redundant information (contained identically in both X1 and X2), 
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of unique information (contained exclusively in either X1 or X2), and of synergistic information 

(contained only in the joint random variable (X1, X2)). For the general case of K predictors, Williams 

and Beer [1] proposed one such decomposition called the partial information (PI) decomposition to 

specify how the total information about the target is shared across the singleton predictors and their 

overlapping or disjoint coalitions. However, effecting a non-negative decomposition is known to be a 

surprisingly difficult problem even for the case of K = 3 [2]. In particular, it is not always possible to 

attribute operational significance to all the atoms induced by the decomposition. What operational 

questions should an ideal measure of redundant or unique information answer? In this paper, we 

explore the bivariate case and demonstrate the richness of this question through the lens of network 

information theory. 

We briefly motivate the problem with reference to several applications where information-theoretic 

notions of synergy and redundancy are deemed useful. One of the main challenges in computational 

neuroscience is to quantify the neural code, i.e., how well neural populations encode sensory 

information and what is the fidelity of such a representation [3], [4], [5], [6]. Single neurons are not 

very informative in that they do not encode the stimulus well and what counts is the activity of 

ensembles of neurons. In the context of neural coding, compound events in neural spike patterns may 

jointly carry far more information than that is carried independently by its parts, e.g., two spikes close 

together in time may carry far more information than the aggregate of the individual spikes, thus 

demonstrating synergy in the code [7]. Similarly, in computational genetics, cellular pathways are 

highly cooperative and diseases such as cancer can be better analyzed in terms of the synergy among 

multiple interacting genes, i.e., in terms of the purely synergistic, as opposed to independent nature of 

their contributions towards a phenotype [8]. The common objective of all these studies is to identify 

how the total informational load induced by the stimulus is shared amongst participating coalitions of a 

set of component sources (neurons, genes, etc.). Further motivating examples for studying information 

decomposition abound in distributed control [9] and adversarial settings like game theory [2], where 

notions of common knowledge shared between agents are used to describe epistemic states.  

The organization of the paper is as follows. In Section 2, we discuss the existing notions of common 

information (CI). In Section 3, we introduce the PI decomposition framework [1] and evaluate a 

recently proposed measure of redundancy [10] based on the Gács and Körner’s CI [13]. In Section 4, 

we briefly explore the subtleties in defining a combinatorial dual of the Gács and Körner’s CI. We 

show how two seemingly different approaches [11], [12] arrive at a very similar definition of unique 

information. We also identify a set of conditions when a conditional version of Gács and Körner's CI is 

an ideal measure of unique information. Finally, we show how a modified framework of the 

information bottleneck principle [29] can be used to quantify unique information. 

2. Common information measures 

We use lowercase letters x, y, etc. to denote values of RVs and uppercase letters X, Y, etc. to denote 
RVs. We use 1( , , )n

nX X X  for a discrete random vector to denote n i.i.d. repetitions of the RV X. 

Let X be a discrete RV with alphabet  and probability distribution ( ) Pr{ }, .Xp x X x x    We 

write Xp (x) as p(x) when there is no confusion, i.e., ~ ( ).X p x  Then the entropy of X, ( )H X is defined 

as ( ) ( ) log ( ).xH X p x p x    For a joint RV ( , )X Y  distributed in ( )   as per the joint 
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distribution law ( , ),p x y  i.e. ( , ) ~ ( , ),X Y p x y  the mutual information between X and Y is defined as 

( , )I X Y   ( , )
( , ) ( ). ( )( ) ( ) ( ) ( , ) log .p x y
x y p x p yH X H Y H XY p x y        I(X; Y) is the most frequently used 

notion of common information (CI) and quantifies the descriptive savings in communication rate if the 

receiver has some prior side information about the messages being conveyed. Depending on the 

operational questions it answers, there are at least two other notions of CI, due to Gács and Körner 

[13] and Wyner [15]. Each of these notions appears as solutions to asymptotic formulations of some 

important information processing task. 

2.1. Information structures and the lattice of information σ-algebras  

The earliest ideas of representing information by a partition of the sample space dates back to 
Shannon [17]. A partition of a set  is a division of  into non-empty, disjoint subsets s.t. their union 

gives back the set .  Given an underlying probability space, there exists a natural one-to-one mapping 

between sample-space partitions and σ-algebras. This implies we can partition the set of all RVs into 

disjoint equivalence classes, called information elements, s.t., all RVs within a given class are 

informationally equivalent [17], [18]. Shannon then defined a relation of inclusion between two such 

information elements: we say that Y (X) is informationally richer (poorer) than X (Y) if Y  X 

( | ) 0.H X Y   We write X Y to denote that X and Y are informationally equivalent. This naturally 

induces a partial order on the information elements and to keep track of the inclusion relations, 

Shannon defined the information lattice as a set of information elements closed under the sum (join) 
and product (meet) operations. The join of two RVs, ( ) and ( ),X Y    denoted by Z X Y  is 

simply the joint RV ( , ),Z X Y  and is called the total information of both X and Y. Similar, the meet 

of two RVs X and Y, denoted by Q X Y  is the largest RV Q s.t. Q  X, Q  Y, i.e., Q is the poorest 

among all information elements that are richer than both X and Y. Shannon called Q X Y  as the 

common RV of X and Y. The join and meet operations are associative and commutative, but in general, 

information lattices are neither distributive, nor even modular [17]. Figure 1(a) shows an example of 

an information lattice [17] where X, Y and Z are three independent RVs. Figure 1(b) shows an example 
of a XOR lattice, XOR( , ),Z X Y where the triple ( , , )X Y Z are pairwise independent. However, 

taking any pair uniquely determines the third one, i.e. sum of any two represents the total information 

in the system. The XOR lattice exemplifies the non-distributive nature of the information lattice [17], 
since ( ) ( ) 0,Z Y Z X    whereas ( ) 0.Z X Y Z     

2.2. Gács and Körner Common Information 

Almost two decades following Shannon’s work [17], Gács and Körner’s [13] independently 

proposed and studied in detail the notion of common information. For characterizing common 
information, Gács and Körner specified the maximum common function of X and Y, mcf ( , )X Y as 

separate functions of X and Y that agree with probability 1, s.t. any other common function of X and Y 
is a function of mcf ( , ).X Y  Let 1{ , ,}i i iX Y 

  be i.i.d. copies of the pair ( , ) ( , ).X Y p x y  Let ( , )n nf g  be 

a pair of deterministic mappings and let ( ) and ( ). n n n nQ f X Q g Y  Let Pr{ },n Q Q    
1 ( ),n n H Q  1and ( , )n n

nf g 
  be a sequence of such mappings for which lim 0.nn




  For this sequence, 
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let limsup .nn
  

  Thus it is possible to extract about  bits per symbol of information by observing 

the sequences { }kX  and { }kY  independently. Gács and Körner [13] defined a notion of CI as 

 ; sup ,GKC X Y   where the supremum is taken over all sequences of pairs of mappings for which 

lim 0.n
n




  Remarkably, Gács and Körner [13] and later Witsenhausen [14] showed that the common 

core of two correlated discrete memoryless information sources (2-DMS) is not always 
"materializable", even if the sequences 1{ }i iX 

  and 1{ }i iY 
  are highly correlated, i.e., CGK (X; Y) = 0, 

except for the special case where X = (U, Q) and Y = (V, Q), and H(Q)   0. Thus, the asymptotic case 
is no better than the zero-error case and ( ; ) (mcf ( , )) ( ).GKC X Y H X Y H X Y   Common codes of a 

2-DMS can only use deterministic interdependence of the sources and no further correlation can be 

exploited unless the pair (X, Y) has a decomposable joint distribution. Since CGK (X; Y) depends only 
on the zero pattern of the joint distribution XYp and not on the actual outcomes, X and Y can be highly 

correlated and yet have nothing explicitly in common. 

 

Figure 1. (a) Information lattice for three independent RVs ( , , ).X Y Z  (b) The XOR information 

lattice. 

 

              
The zero pattern of the joint distribution XYp  can be specified by its characteristic bipartite graph 

BXY [19], [20], [21] with the vertex set    and an edge connecting two vertices x and y if 
( , ) 0.XYp x y   Following the terminology in [21], suppose that the graph thus obtained contains k 

connected components (called minimal disjoint components, MDCs), where 1    | | .k    Now let 

the function : 2f      map a vertex m of BXY into the set of vertices in the MDC of BXY 

containing .m  Similarly, define the function : 2 .g      The common RV of X and Y is then 

Q X Y   ( ) ( ).f X g Y   Now, every pair ( , )X Y  admits a unique decomposition of ( , )   into 

MDCs. Let  1 1( , ),..., ( , )k k     be such a decomposition, where , .i i      Defining 

( ) ( ),
i

Y i Yy
p p y

 
   the Gács and Körner CI can alternatively be defined as ( )H X Y  

1
( ( ))

k

Y ii
H p


    (Theorem 5, [21]). It is easy to check that ( ) 0H X Y   iff ( , )  is a MDC (i.e., k 

= 1), when we say that XYp is indecomposable. For example, a binary symmetric channel with non-

0 

X Z 

X+Y 
X+Z 

Y+Z 

X+Y+Z 

Y 

X Y Z 

0 

1 

(b) (a) 
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zero crossover probability has a single MDC, and hence ( ) 0.H X Y   Now define the zero 

information component (ZIC) as follows: ( , )i i  is a ZIC if ,  , ,i ix y y     

| |( | ) ( | ),X Y X Yp x y p x y  and |,  ,  ( | ) 0.i i Y Xx y p y x      ( ) ( ; ),H X Y I X Y   iff all MDCs are 

ZICs [21], when we say that the pair ( , )X Y  is perfectly resolvable [16]. We say that the common core 

Q perfectly resolves (X, Y), if ( ; | ) 0I X Y Q   and ( | ) ( | ) 0.H Q X H Q Y   Figure 2 shows the 

bipartite graph of a pair of dependent RVs  ( , ).X Y  The solid black lines each have a probability mass 

of 1
8 ,  and the lighter ones 8 .  When 0,   X and Y can be written as ( , )U Q  and ( , )Q V  

respectively, where U, V, Q are independent, and ( ; ) ( ) 1.GKC X Y H Q   Intuitively, for small values 

of , ( , )X Y have still a lot in common. However ( ; )GKC X Y is discontinuous in , jumping from 

( ; ) 1GKC X Y   at 0   to ( ; ) 0GKC X Y   for any 0,   howsoever small [13], [14], [16]. Thus, when 

there is only a single connected component, ( ; ) 0GKC X Y   even if it is the case that by removing a set 

of edges that account for a small probability mass, the graph can be decomposed into a large number 

of MDCs, each with a significant probability mass.  

Figure 2. Bipartite graph of ( , ).X Y  

 
 

2.3. Wyner common information and more recent generalizations 

The fact that CGK (X; Y) is degenerate for most non-trivial distributions motivated Wyner [15] to 

devise a distributed lossless source coding setup for coding the 2-DMS into a common part (analogous 

to Q) and two “private” parts (analogous to U and V). He gave a single-letter characterization of the CI 

that is strictly greater than mutual information as follows: CW (X; Y) is the infimum of the mutual 

information between (X, Y) and Q, where the infimum is taken over all auxiliary RVs Q conditioned on 
which X and Y are independent, i.e., 

: 
( ; ) inf ( ; ),W

Q X Q Y
C X Y I XY Q

 
  with ||  ||||, where X − Q − Y 

means that these RVs form a Markov chain in that order. ( ; )WC X Y  quantifies the resource cost of 

generating correlated RVs.  
The different notions of CI are related as, ( ; ) ( ; ) ( ; ),GK WC X Y I X Y C X Y  with equality holding iff 

( , )X Y can be written in the form ( , )X U Q and ( , )Y V Q  where U, V, Q are independent, whence 

( ; ) ( ; ) ( ; ) ( ; ).GK WC X Y I X Y I X Y C X Y    While the Gács and Körner CI obeys an intuitive 
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monotonically non-increasing property that any reasonable definition of common information must 

satisfy, Wyner’s CI is a non-decreasing function of the number of input arguments [22]. In particular, 

the following monotonicity relationships are well-known [22], [23].  

1 1 1

1 1 1

1 1
, , 1,..., , , 1,...,

( ; ; ) ( ; ; )

( ; ; ) ( ; ; )

( ; ; ) min ( ; ) max ( ; ) ( ; ; )

GK K GK K

W K W K

GK K i j i j W K
i j i j K i j i j K

C X X C X X

C X X C X X

C X X I X X I X X C X X





   




  
  

 
 
 

 
(1) 

Very recently, a generalization of the setup of Gács and Körner was developed in [16] where a 
three-dimensional rate region called the assisted residual information region, ( ; )X YT is introduced. 

The rate region quantifies the extent to which a piece of common information resolves the dependence 
between ( , ),X Y  relying on rate-limited private communication from an omniscient genie to unlock 

hidden layers of "almost common" information. The boundary of the ( ; )X YT region is made up of 

triples of the form 21 22 1( , , ) ( ( ; | ), ( ; | ), ( ; | )).I Y Q X I X Q Y I X Y Q     If the ( ; )X YT region includes 

the origin, then the common core Q perfectly resolves (X, Y), whence ( ; ) ( ; ),GKC X Y I X Y  i.e., 

conditioned on Q, there is no “residual information” that correlates X and Y. Both the residual 
information ( ( ; ) ( ; ))GKI X Y C X Y and Wyner CI feature as extreme points on the boundary of the 

( ; )X YT region [16] and can be expressed as follows: 

0

1 2

0
: ( | ) ( | ) 0 (0,0, ) ( ; )

1 2
: ( , ,0) ( ; )

( ; ) ( ; ) min ( ; | ) min

( ; ) ( ; ) min ( ( ; | ) ( ; | )) ( ; ) min

GK
Q H Q X H Q Y R X Y

W
Q X Q Y R R X Y

I X Y C X Y I X Y Q R

C X Y I X Y I Y Q X I X Q Y I X Y R R

  

  

  

     
T

T

(2) 

Importantly, the nontrivial shape of the boundary of the ( ; )X YT region captures the subtle 

characteristics of correlation that is not reflected in the common information of Gács and Körner.  

3. Quantifying redundant information 

Let  { }a aX X   be a K-tuple of RVs ranging over finite sets a, where is an index set of size 

| | . K  Now let { }
i ia aX X    be m non-empty, potentially overlapping subsets of Xwith index 

sets  ,i   and define { }
i i

X X      as any arbitrarily chosen collection of m such subsets. 

Williams and Beer [1] introduced the partial information (PI) diagrams to decompose the total mutual 
information, ( ; )I X Y into non-negative, non-overlapping partial information (PI) atoms s.t. summing 

over all the PI-atoms yields back the total mutual information ( ; ).I X Y  Figure 3 shows the PI-

diagram for K = 2 [1], [11].  Each irreducible PI-atom represents information that is redundant, unique 
or synergistic. Following the notation introduced in [11], e.g., for K = 2, {1} and {2} are respectively, 

the unique information about Y, that X1 and X2 exclusively convey; {1,2} is the redundant information 

about Y, that X1 and X2 both convey; {12} is the synergistic information about Y, that the joint RV (X1, 

X2) conveys, i.e., information that can only be conveyed by a coalition.  
From Figure 3, it is easy to see that the three equations specifying 1 2 1( ; ),  ( ; )I X X Y I X Y  and 

2( ; )I X Y do not fully determine the four functions {1,2},{1},{2} and {12}.  Williams and Beer [1] 

accomplish the decomposition by defining a notion of redundant information and proposed the 
following axioms that any valid measure of redundancy ( ; )I X Y must satisfy: 
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1. (GP) Global positivity: ( ; ) 0.I X Y   

2. (S) Weak symmetry: ( ; )I X Y is symmetric in .X  

3. (I) Self-redundancy: 1( ; ) ( ; ).I X Y I X Y  

4. (M) Monotonicity: 
1 1 1

( , , ; ) ( , , ; ).
m m

I X X Y I X X Y       

Following [1], a host of other desirable axioms have been proposed [2], [24], [10]. However, for the 

exposition to follow, it suffices to consider the above properties. While defining the collection of 
subsets ,X we did not rule out the possibility that some subsets might be supersets of others. 

Properties (S) and (M) enormously simplify the bookkeeping structure in that only those subsets need 
to be considered which satisfy the ordering relation   ,i j i j     [1], [2]. The redundancy 

structure then naturally induces a partial order on all such valid subsets ,
v

X X   so that ( ; )
v

I X Y  

is now a monotone function on the lattice of anti-chains [1]. Williams and Beer [1] called such a lattice 
structure of redundancy as the partial information lattice. Thus when (.)I  is defined, a unique 

decomposition can be accomplished using a Möbius inversion [1], taking care to ensure that locally all 

the PI-atoms are non-negative (local positivity).  

Figure 3. PI-diagram for K = 2. 

 

        
As elegant a decomposition as it is, the PI decomposition is however not perfect. Increasing the 

number of predictor RVs amounts to a combinatorial explosion of PI-atoms. Already in the K = 3 case, 

there are 18 PI-atoms, since the same state of the target RV can now have any combination of 

redundant, unique or synergistic PI-atoms [11]. For instance, now the PI-atoms comprise of the 

following combinations:  
o unique: {1},{2},{3};  

o redundant: {1,2},{2,3},{3,1},{1,2,3},{1,23},{2,13},{3,12};  and 

o synergistic: {12},{23},{31},{123},{12,13},{12,23},{13,23},{12,23,31}.  

{12} 

{2} 

{1,2} 

{1} 

 1 2

1

2

1 2

2 1

( ; ) {1,2} {1} {2} {12}

( ; ) {1,2} {1}

( ; ) {1,2} {2}

( ; | ) {1} {12}

( ; | ) {2} {12}

redundant synergisticunique

I X X Y

I X Y

I X Y

I X Y X

I X Y X

   

 
 

 
 


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Attributing operational meaning to each of these atoms is a significant challenge. By considering a 

simple three-input XOR example, it was shown in [2], that local positivity is incompatible with the PI 

lattice. Furthermore, the redundancy measure proposed by Williams and Beer [1] suffered from some 

important drawbacks [2], [24]. Since then, several other notions of redundancy have been proposed. 

Using the framework of information geometry, Harder et al. [24] defined a measure of bivariate 

redundancy based on projections in the space of probability distributions.  

More recently, Griffith et al. [10] defined a measure of redundancy using the Gács and Körner’s CI. 

They defined the zero-error redundant information shared between the K-tuple of predictor RVs 

 { }a aX X   and the target RV Y, ( ; )GKC X Y  as  

                                 (a)

1

1

: ( | ) 0, 
( ; ) max ( ; )

                   ( ... ; )

                    ( ... )

GK
GK

GK K

K

Q H Q X aa
C X Y C Q Y

C X X Y

H X X Y

  

  
   






 
(3) 

where (a) follows from the fact, 1( ... )KQ X X   is the largest common RV that is informationally 

poorer than  ,aX a  i.e., Q   aX a   (in the sense of the partial order ). Based on the above 

definition, they defined the mutual information counterpart ( ; )GKI X Y  as  

1( ; ) ( ... ; )GK
KI X Y I X X Y    (4) 

Griffith et al. [10] showed that both ( ; )GKC X Y and ( ; )GKI X Y satisfy a host of important 

properties (see Table 1 in [10]) associated with an ideal redundancy measure. Though elegant in its 
formulation, ( ; )GKI X Y inherits the negative character of the original definition of Gács and Körner 

and is trivially zero for a large class of interesting joint distributions. Thus, unless the K-tuple of 
predictors have a decomposable joint distribution, ( ; )GKI X Y  is zero, even if it is the case that the 

predictors share non-trivial redundant information about the target Y. 

It is instructive to consider if Wyner’s CI is a better alternative in specifying redundant information. 

Unfortunately, as is clear from (1), Wyner’s definition violates the monotonicity property (M) and is 

not a suitable measure of redundancy in the PI decomposition framework. Perhaps, a more useful 

motion of common information is captured in the assisted residual information setup [16]. For triples 
of the form ( ( ; | ), ( ; | ), ( ; | ))I Y Q X I X Q Y I X Y Q  on the boundary of the ( ; )X YT region, define the 

minimum assisted common information as the minimum distance (in a Euclidean distance sense) from 
the origin to the boundary of the ( ; )X YT region as follows:  

min ( ; ) inf ( ( ; | ) ( ; | ) ( ; | ))
Q

C X Y I Y Q X I X Q Y I X Y Q   (5) 

min ( ; )C X Y  measures the minimum distance from perfect resolvability and captures the notion of 

minimal assistance required from a genie so that the common core can be extracted for all non-trivial 
correlations. However, unlike ( ; ),GKC X Y  min ( ; )C X Y  appears to be a much more difficult quantity to 

compute for interesting RVs. Moreover, min ( ; )C X Y  violates the monotonicity property (M) and for all 

practical purposes is restricted to the bivariate case. 
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4. Quantifying unique information 

Let 1{ , ,}i i iX Y 
  be i.i.d. copies of the pair (X, Y) ~ p(x, y), taking values from finite sets and . To 

transmit the sequence { }iX  via a finite capacity channel, with asymptotically negligible probability of 

error, the channel capacity must at least be H(X). However, if side-information { }iY  is made available 

at the decoder, then the celebrated Slepian-Wolf theorem ([25], Theorem 15.4.1) says that the required 
capacity is reduced to ( | ).H X Y  Thus it is tempting to interpret ( | )H X Y as a natural measure of 

unique or private information of X with respect to Y, that can be isolated and transmitted separately. 

Completely describing X thus entails no more than first describing the information that Y shares about 
X at a rate ( ; )YR I X Y  and then describing the remaining uncertainty about X at rate ( | ).H X Y  

However, contrary to this seemingly harmless intuition, explicit examples were constructed in [21], 

where H(Y) is arbitrarily large, Y contains arbitrarily small information about X and yet extracting this 
infinitesimally small amount of information, ( ; ),I X Y  requires a complete description of Y, i.e., 

( ) ( ; ).YR H Y I X Y   This implies that the information contained in Y about X cannot be separated 

from the other information that Y contains [21], and hence unique information cannot be extracted in 

general. Given such subtleties involved with its asymptotic counterparts, it is natural to ask if there 

exists a zero-error version for private information of X with respect to Y. 

4.1. A combinatorial dual of Gács and Körner’s common information 

In the late 1970s, Witsenhausen [19] explored a zero-error side information problem for correlated 

sources. He showed that, in the presence of side information Y at the decoder, the minimum cardinality 

of the signal alphabet needed to transmit X without any error is related to the chromatic number of the 
characteristic graph ( , ).XYG     XYG  is derived from the bipartite graph BXY introduced earlier as 

follows: for distinct vertices 1 2 1 2 1, ,  ( , ) ,  iff  ,  s.t. ( , ) 0,XYx x x x y p x y        2( , ) 0,XYp x y   we 

call such a pair of vertices 1 2( , )x x  as confusable [19]. Then the chromatic number of XYG gives the 

minimal number of symbols needed to transmit X and the minimal such valid coloring gives the private 
information of X with respect to Y, ( \ ),WPI X Y  i.e., amount of information that X needs to transmit to 

Y in order to share information with zero error. ( \ )WPI X Y  may be construed as the minimal amount 

of information that Y needs from X to fully describe ,X Y i.e., ( \ ) .WPI X Y Y X Y    

The following contrived example illustrates the concepts: Consider the set, 
{0,1,2,3,4,5,6,7,8,9, , , , , , }.a b c d e f   Since information elements can be identified with sample-

space partitions, consider now the following partitions on the set :    

01| 23 | 45 | 67 | 89 | | | ,  and 02 | 34 | 56 | 78 |19 | | |X ab cd ef Y ac de bf   

It is easy to see that  

0 |1| 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | | | | | | ,  and

0123456789 |

X Y a b c d e f

X Y abcdef

 
 

 

Figure 4 shows the bipartite graph BXY consisting of two disjoint noisy typewriter channels and the 
characteristic graph XYG derived from it. The confusable vertex pairs include 
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(01,23), (23,45), (45,67), (67,89), (89,01), ( , ), ( , ),  and ( , ).ab cd cd ef ab ef  

Several distinct valid minimal colorings exist [19], two of which are shown below, along with the 

induced σ-algebras:  

Figure 4. The bipartite graph BXY consisting of two disjoint noisy typewriter channels and the 
characteristic graph XYG derived from it. 

             

1 2 3

1 2 3

{01,67, },  {23,89, },  {45, }

( \ ) 0167 | 2389 | 45

{01, 45, },  {23,67, },  {89, }

( \ ) 0145 | 2367 | 89

W

W

ab ef cd

PI X Y ab ef cd

ab cd ef

PI X Y ab ef cd

  

  

  


    
 

 

It is easily seen that  

( \ ) ( \ )W WPI X Y Y PI X Y Y X Y      

Hence, such a minimal coloring is not unique [19] and consequently, ( \ )WPI X Y is not unique. 

Hexner and Yo [26], [27] studied common and private information structures in a decision-theoretic 

framework. Their definition of common information coincides with that of Gács and Körner’s 

definition [13]. However, their notion of private information differs from that of Witsenhausen [19]. 
They defined private information, ( \ )HYPI X Y as the minimal amount of information needed to fully 

describe X, given the common information ,X Y i.e., ( \ ) ( ) .HYPI X Y X Y X    Unfortunately, the 

definition does not admit a unique specification for the private information as can be seen from the 
following example [26]. Consider the set, {0,1,2,3,4,5},   and the following partitions on the set . 

0 |12 | 3 | 45,  and 01| 2 | 34 | 5X Y   

It is easy to see that,  

0 |1| 2 | 3 | 4 | 5,  and

012 | 345

X Y

X Y

 
 

 

01 02 

34 

56 

78 

90 

23 

45 

89 

ef 

67 

cd 

ab ac 

de 

bf 

Y 

89 

ab 
01 

23 

45 67 ef cd 

GXY BXY 

X 
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Further, each of the following σ-algebras satisfies the definition, i.e.  

( \ ) 03 |1245

( \ ) 045 |123

( \ ) ( ) ( \ ) ( )

( \ ) ( \ )

HY

HY

HY HY

HY HY

PI X Y

PI X Y

PI X Y X Y PI X Y X Y X

PI X Y Y PI X Y Y X Y


 

     
    

 

Thus, like ( \ ),WPI X Y ( \ )HYPI X Y  is not unique. The two definitions may be contrasted in that, while 

( \ )HYPI X Y  complements X Y  to reconstruct X, ( \ )WPI X Y complements Y to reconstruct .X Y  

Hexner and Yo [27] surmised that much of the pathological behavior of the private information 

structures can be attributed to the non-modularity of the information lattice. In what follows, we 

analyze some of the more recent attempts to quantify unique information, mostly pursued in the 

context of the PI decomposition framework.   

4.2. The union of parts and the intrinsic conditional information 

Griffith and Koch [11] noted that by simply amending the colloquial definition of synergy from 

“whole minus the sum of parts” to “whole minus the union of parts” one can discount double-counting 

whenever there is redundancy among the parts. Using the two-input XOR as an exemplary model of 

synergy, they adapted the intrinsic conditional information [28] to compute the synergy as a 
constrained optimization problem. To see this, notice that for a two-input XOR, 1 2XOR( , )Y X X , 

where 1
2~ Bernoulli( ),  1, 2,iX i   the whole of 1 2( )X X  is required to fully specify Y, i.e., 

1 2 1 2 1 2( ; ) ( ; ) ( ; ) 0, ( ; ) ( ) 1.I X X I X Y I X Y I X X Y H Y      Now consider the following information-

theoretic identity, where we have expanded the terms on the right using the PI-diagram in Figure 3.  

1 2 1 2 1 2 1 2

{12} {1} {2} {1,2} {1,2} {1} {1,2} {2} {1,2}

( ; | ) ( ; ) ( ; ) ( ; ) ( ; ) {12}I X X Y I X X Y I X X I X Y I X Y
    

         

It appears that the conditional mutual information 1 2( ; | )I X X Y is an ideal candidate measure to 

quantify synergy, {12}.  However, it is well known that whereas conditioning always reduces ordinary 

entropy, the same does not hold for the mutual information, unless the triple of RVs 1 2( , , )X X Y form a 

Markov chain in any order [25]. In fact, whenever, we have pairwise independence, conditioning 

always increases mutual information. This is easily seen for a two-input XOR example 
since 1 2( ; ) 0,I X X   whereas 1 2( ; | ) 1.I X X Y   Thus, conditioning on the side information Y generates 

artificial correlation beyond that is actually there. Maurer and Wolf [28] utilize this simple argument 

to construct their upper bound on the secret key rate by taking a reduced conditional mutual 
information, where the reduction is effected over all Markov chains 1 2 .X X Y Y    The intrinsic 

conditional information, 1 2( ; )I X X Y  discounts all artificial correlations brought in by the additional 

side-information Y. Indeed for the XOR example, 1 2 1 2( ; | ) 1,  but ( ; ) 0.I X X Y I X X Y    Intuitively, 

these artificial correlations are the source of synergy as realized by Griffith and Koch who define 
synergy as 1 2 1 2 1 2( ; ) ( ( ; | ) ( ; ))SynergyI X X Y I X X Y I X X Y    to quantify the whole minus the union of 

parts. In what follows, we recount their arguments in a new light, showing that the constrained 
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optimization set they arrive at leads to exactly the same definition of unique information as proposed 

in a recent work by Bertschinger et al. [12]. Finally, we mention at least one scenario, where their 

measure can fail. 

In the derivation to follow, we utilize the decomposition of 1 2( ; | )I X X Y  into PI-atoms (see Figure 

3).  

 

1 2 1 2

1 2 1 2

1 2 1 2 1 2 1 2

(a)

1 2 1 2 1 2 1 2

{12} {1,2}

1 2

1 2

1 2

( ; | ) ( ; )

( ; | ) min ( ; | )

( ; | ) min ( ; ) ( ; ) ( ; ) ( ; )

( | ) ( ; ) ( ; ) min ( ; ) ( ; ) ( ; )

X X Y Y

X X Y Y

X X Y Y

I X X Y I X X Y

I X X Y I X X Y

I X X Y I X X Y I X X I X Y I X Y

I X X Y I X Y I X Y I X X Y I X Y I X Y


 

 

 

 
 

      

        

(b)

1 2 1 2 1 2 1 2
            

{12} {1,2}

1 2
            

1 2
Pr{ , } Pr{ , }, 1,2

1 2
Pr{ ,

( | ) ( ; ) ( ; ) min ( ; ) ( ; ) ( ; )

( | ) min

X X Y Y
X Y X Y ii i

X X Y Y
Xi

I X X Y I X Y I X Y I X X Y I X Y I X Y

I X X Y


 
 

 

 
 
  

 
        
  

 

 



1 2

1 2

} Pr{ , }, 1,2

( ; )

( ; )Synergy

Y X Y ii

I X X Y

I X X Y

 





We note that in going from steps (a) to (b) we have added constraints to ascribe operational meaning to 
the optimal auxiliary RV ,Y  s.t. Y  specifies the union of parts. One way to do this is by noting that 

both the unique and redundant information, and hence the union of parts information should depend 
only on the marginal distribution of the pairs 1( , )X Y  and 2( , )X Y [11], [12]. Preserving the 

consistency of the marginal distributions then amounts to the following constraints: 
Pr{ , } Pr{ , }, 1,2.i iX Y X Y i   Also, these additional constraints do not increase the argument 

under
1 2

min [.],  i.e., {12} {1, 2}
X X Y Y  

 , which is the difference between the synergy and the redundancy PI-

atoms [11]. It may be noted that Bertschinger et al. [12] approach the same problem of quantifying 

unique and redundant information utilizing a decision-theoretic framework. In particular, they use a 

similar set of constraints in motivating an operational meaning of unique and redundant information. 

The remainder of the derivation follows, given these additional constraints.  

Griffith and Koch’s measure [11] suffers from an important drawback in that, bringing in an 
additional target variable, 1Y  can increase the synergy sharply by an arbitrarily large amount. This can 

be seen from the fact that, while additional side information cannot reduce the conditional mutual 

information by more than the entropy of this side information, i.e., 

1 2 1 1 2 1| ( ; | ) ( ; | ) |   ( ),I X X YY I X X Y H Y   the same does not hold for the intrinsic conditional 

information. An extra conditioning on 1Y  can increase the difference 1 2 1 1 2 1( ( ; | ) ( ; ))I X X YY I X X YY   

sharply, which is clearly not a desirable property of an ideal measure of synergy. 

4.3. Conditional Gács and Körner’s CI and unique information 
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It may be noted that under a reordering of the arguments, the intrinsic information, 1 2( ; )I Y X X  

has a more natural analogy with the notion of unique information, since this quantity naturally 
quantifies how much information that 1X  has about Y that is unknown to 2.X  However, as can be 

easily checked, 1 2( ; )I Y X X  does not obey an important consistency condition, that any valid 

measure of unique information uniqueI  must satisfy [2], viz.,   

1 2 1 2 1 2( ; ) ( ; | ) ( ; ) ( ; | )unique uniqueI Y X I Y X X I Y X I Y X X    (6)

Hence, 1 2( ; )I Y X X  cannot be interpreted as unique information in the PI decomposition framework. 

A conditional version of the Gács and Körner’s CI, 1 2( ; | )GKC Y X X  satisfies the aforementioned 

consistency condition in (6) when some additional constraints are imposed on the underlying 
distribution. This is best illustrated with an example. Suppose 1 2,X X  are two binary RVs chosen 

independently and uniformly from {0,1},  and Y is an unaltered copy of both 1 2 and .X X  Clearly, 

both 1 2 and X X  contain 1 bit worth of unique information about Y, whereas there is no redundancy 

between 1 2 and X X  with respect to Y, since 1 2and X X  are independent. This intuition is borne out of 

the fact that 1 2 2 1( ; | ) ( ; | ) 1GK GKC Y X X C Y X X   bit. More generally, it is easy to check that if the 

pairs 1( , )Y X  and 2( , )Y X  are perfectly resolvable, then  1 2 2 1( ; | ) and ( ; | )GK GKC Y X X C Y X X   satisfies 

the consistency condition  

1 2 1 2 1 2( ; ) ( ; | ) ( ; ) ( ; | )GK GKI Y X C Y X X I Y X C Y X X    (7)

and hence is an ideal measure of unique information, albeit under highly restrictive assumptions. 

4.4. Information bottleneck, sufficient statistics and unique information 

In Section 4.2, we have seen that in quantifying unique information, both the approaches in [11] and 

[12] involve some kind of a constrained optimization. In this section, we seek to answer the following 

question: what other constrained optimization setups can be used to quantify unique information? It 

turns out that, under some additional constraints on the underlying distribution, we can quantify unique 

information using a modified framework of the information bottleneck (IB) principle [29], called the 

information bottleneck with side information (IBSI) [30]. In particular, for the two-variable case, by 

treating the information provided by one singleton predictor as irrelevant side information, unique 

information provided by the other singleton can be extracted as relevant information. In [31], an 

improved formulation called the conditional information bottleneck (CIB) was introduced. Recall that 
for any Markov chain of the form, ( ),P X f X   the data processing inequality [25] guarantees that  

( ; ) ( ; ( )).I P X I P f X  In case equality holds, i.e., if ( ) ,P f X X   we say that ( )f X is an exactly 

sufficient statistic for predicting P from X. Finding an exactly sufficient statistic is a difficult problem, 

but the IB framework provides a tractable alternative to finding approximately sufficient statistic [29]. 

Before getting into the details of extraction of unique information using the modified IB framework, 

we discuss an important practical limitation of estimating the joint distribution of the set of all 

predictors and the target. Sample sizes, for instance, from typical recordings in electrophysiological 

experiments are rarely sufficient for reliable estimation of the entire joint distribution even for 

moderate values of K. It turns out that the assumption of target stimulus-conditioned independence of 

the predictors simplifies the picture to a considerable extent without deviating much from the true joint 
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distribution [30]. Such an assumption is intrinsic to both the IBSI and CIB problem setups and with 

this additional constraint on the underlying joint distribution, unique information can be extracted by 

either formulation. The discussion below follows the CIB formulation. 
The CIB problem [31] is formulated as follows: Given the joint distribution 1 2( , , )p x x y  of the pair 

1 2( , , ),X X Y  suppose the goal is to extract the unique information that singleton predictor X1 provides 

about Y. This can be accomplished by finding a stochastic map ( | )p t y  from Y to a “bottleneck” RV T, 

s.t., T maximizes the conditional mutual information 1 2( ; | ).I T X X  T only depends on Y and is 

independent of X1 and X2, given Y. Here X1 is called the relevant variable and X2 the irrelevant side 

information. In effect, the unique information that X1 provides about Y is squeezed through the 

compact bottleneck representation T. This idea is illustrated in Figure 5. It may be noted that the above 

Markov chain constraint is not a modeling assumption, but rather a part of the definition of the 
problem setup, so that the marginal over 1 2( , , , )p x x y t  is always consistent with the input distribution 

1 2( , , )p x x y [29]. This then leads to a constrained optimization problem that can be formulated using 

Lagrange multipliers as follows [31],  

1 2
( | )

min ( ; ) ( ; | ),  s.t. ( | ) 1,  and ( | ) 0, ,  
p t y t

I Y T I X T X p t y y p t y y t    L   
(8)

The parameter   captures the level of quantization we can afford to tolerate in approximating an 

exactly sufficient statistic. As 0,  we are mostly interested in maximal compression, so that 

everything is assigned to a single point, and ( ; ) 0.I T Y   On the other hand, arbitrarily detailed 

quantization can be achieved as .   For any   in between these two extremes, we can explore 

the trade-off between preserving the relevant unique information (that X1 provides about Y) and 

compression of Y at various resolutions. While the underlying optimization problem is not convex, 

convergence is still guaranteed owing to the elegance of the IB variational formulation [31], [29]. 

Indeed, the solution can be characterized by a set of self-consistent equations that yields an iterative 

algorithm that is guaranteed to converge (at least locally) by alternating iterations amongst a set of 

convex distributions [31], [29]. 

5. Conclusions  

In this paper, we took a closer look at the structure of bivariate dependency induced by a pair of 

predictor RVs trying to encode a target RV Y. It remains unclear, whether a desired decomposition in 

the PI framework [1] should be based on Gács and Körner’s notion of CI [1]. While the latter notion 

enjoys the unique property of being representable as an information partition [17], [9], only for a very 

special class of decomposable distributions such a measure yields useful results. A related measure, 

Wyner’s CI is a non-decreasing function of the number of input arguments and does not satisfy an 

intuitive monotonicity property required of any valid measure of redundancy. We identified a set of 

conditions when a conditional version of Gács and Körner's common information is an ideal measure 

of unique information. More generally, the quest for an operationally justified decomposition of 

multivariate information remains an open problem [2]. In this work, we have tried to explore the 

richness of this problem through the lens of network information theory. As opposed to point-to-point 

Shannon theory that has found extensive applications in all areas of neuroscience, we believe that the 
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intersection between network information theory and neuroscience is virtually non-existent. Exploring 

the “synergy” between these two currently active research areas might provide valuable insights and 

possibly enrich both the fields. 

Figure 5. Extracting unique information that singleton predictor X1 (relevant variable) provides about 

Y (given side information in the form the irrelevant variable X2), using the conditional information 

bottleneck principle. In effect, the unique information that X1 provides about Y is squeezed through the 

compact bottleneck representation T 

          

Acknowledgments 

A part of this work was supported by the Advanced VLSI Consortium, IIT Kharagpur. Thanks are 

due to Prof. N. B. Chakrabarti for useful discussions.  

Conflicts of Interest 

The author declares no conflict of interest.  

References and Notes 

1. Williams, P.L.; Beer, R.D. Nonnegative decomposition of multivariate information. arXiv 

preprint arXiv:1004.2515v1, 2010. 

2. Bertschinger, N.; Rauh, J.; Olbrich, E.; Jost, J. Shared Information—New Insights and Problems 

in Decomposing Information in Complex Systems. In Proceedings of the European Conference 

on Complex Systems 2012, Brussels, September 3-7, 2012; pp. 251–269. 

3. Averbeck, B.B.; Latham, P.E.; Pouget, A. Neural correlations, population coding and 

computation. Nature Reviews Neuroscience 2006, 7, 358–366. 

4. Schneidman, E.; Bialek, W.; Berry, M.J. Synergy, redundancy, and independence in population 

codes. The Journal of Neuroscience 2003, 23, 11539–11553. 

5. Latham, P.E.; Nirenberg, S. Synergy, redundancy, and independence in population codes, 

revisited. The Journal of Neuroscience 2005, 25, 5195–5206. 

2X  1X  

Y

T



 16 

 

 

6. Kontoyiannis, I.; Lucena, B. Mutual information, synergy and some curious phenomena for 

simple channels. In Proceedings of the IEEE International Symposium on Information Theory 

(ISIT 2005), 2005, pp. 1651–1655. 

7. Brenner, N.; Strong, S.P.; Koberle, R.; Bialek, W.; van Steveninck, R.R.de R. Synergy in a 

Neural Code. Neural Computation 2000, 12, 1531–1552. 

8. Anastassiou, D. Computational analysis of the synergy among multiple interacting genes. 

Molecular Systems Biology 2007, 3. 

9. Aumann, R.J. Agreeing to disagree. The Annals of Statistics 1976, 1236–1239. 

10. Griffith, V.; Chong, E.K.; James, R.G.; Ellison, C.J.; Crutchfield, J.P. Intersection information 

based on common randomness. Entropy 2014, 16, 1985–2000. 

11. Griffith, V.; Koch, C. Quantifying synergistic mutual information. in Guided Self-Organization: 

Inception, Springer, 2014, pp. 159–190. 

12. Bertschinger, N.; Rauh, J.; Olbrich, E.; Jost, J.; Ay, N. Quantifying unique information. Entropy 

2014, 16, 2161–2183. 

13. Gács, P.; Körner, J. Common information is far less than mutual information. Problems of 

Control and Information Theory 1973, vol. 2, 149–162. 

14. Witsenhausen, H.S. On sequences of pairs of dependent random variables. SIAM Journal on 

Applied Mathematics 1975, 28, 100–113. 

15. Wyner, A.D. The common information of two dependent random variables. IEEE Transactions 

on Information Theory 1975, 21, 163–179. 

16. Prabhakaran, V.M.; and Prabhakaran, M.M. Assisted Common Information With an Application 

to Secure Two-Party Sampling. IEEE Transactions on Information Theory 2014, 60, 3413–3434. 

17. Shannon, C.E. The lattice theory of information. Transactions of the IRE Professional Group on 

Information Theory 1953, 1, pp. 105–107. 

18. Li, H.; Chong, E.K. On a connection between information and group lattices. Entropy 2011, 13, 

683–708. 

19. Witsenhausen, H.S. The zero-error side information problem and chromatic numbers (Corresp.). 

IEEE Transactions on Information Theory 1976, 22, 592–593. 

20. Wolf, S.; Wultschleger, J. Zero-error information and applications in cryptography. in IEEE 

Information Theory Workshop (ITW 2004), 2004, pp. 1–6. 

21. Marco, D.; Effros, M. On Lossless Coding With Coded Side Information. IEEE Transactions on 

Information Theory 2009, 55, 3284–3296. 

22. Liu, W.; Xu, G.; Chen, B. The common information of N dependent random variables. in 48th 

Annual Allerton Conference on Communication, Control, and Computing, 2010, pp. 836–843. 

23. Tandon, R.; Sankar, L.; Poor, H.V. Multi-user privacy: The Gray-Wyner system and generalized 

common information. in Proceedings of the IEEE International Symposium on Information 

Theory (ISIT 2011), 2011, pp. 563–567. 

24. Harder, M.; Salge, C.; Polani, D. Bivariate measure of redundant information. Physical Review E 

2013, 87, 012130. 

25. Cover, T.M.; Thomas, J.A. Elements of information theory. John Wiley & Sons, 2006. 

26. Hexner, G.; Ho, Y.C. Information structure: Common and private (Corresp.). IEEE Transactions 

on Information Theory 1977, 23, 390–393. 



 17 

 

 

27. Ho, Y.C.; Martin, C. Private information structures of A with respect to B. International Journal 

of Control 1977, 26, 973–980. 

28. Maurer, U.M.; Wolf, S. Unconditionally secure key agreement and the intrinsic conditional 

information. IEEE Transactions on Information Theory 1999, 45, 499–514. 

29. Tishby, N.; Pereira, F.; Bialek, W. The information bottleneck method. In Proceedings of the 37-

th Annual Allerton Conference on Communication, Control and Computing, 1999, pp. 368-377. 

30. Chechik, G.; Tishby, N. Extracting relevant structures with side information. In Advances in 

Neural Information Processing Systems 15, T. G. Dietterich, S. Becker, Z. Ghahramani, Eds., 

MIT Press, 2002, pp. 857–864. 

31. Gondek, D.; Hofmann, T. Conditional information bottleneck clustering. in 3rd IEEE 

International Conference on Data mining, Workshop on clustering large data sets, 2003, pp. 36–

42. 

 

© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 

 


