Title: A Citizen Science and Crowdsourcing Framework for Community-Led Water Security Monitoring

AUTHORS

Ekolle Eya* Ben Jarihani

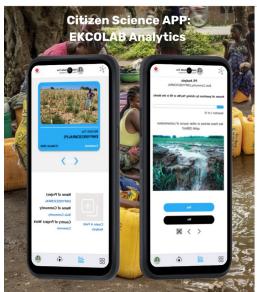
INTRODUCTION

In this research, we propose a novel citizen science approach that fuses crowdsourced citizen data from a **co-designed mobile platform with satellite remote sensing and in-situ sensors**. Our research utilizes a Participatory Action Research approach to co-develop a mobile platform with community participants. This grassroots data will be integrated with in-situ sensor measurements and satellite remote sensing products (e.g., MODIS, Sentinel-2) to improve the spatiotemporal accuracy of hydrological risk models that will help to produce **high-resolution** hydro-climate information for the community and develop an integrated hydrological and WASH Risk Index at the village scale.

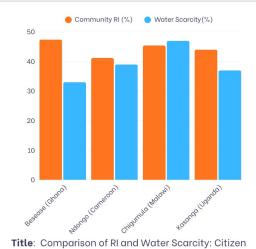
OBJECTIVE

To improve the accuracy of **risk models and create a scalable, community-led system** for managing water resources for **agriculture**, monitoring water quantity and quality in climate-vulnerable regions.

AFFILIATIONS


- Department of Geology and Geophysics, Novosibirsk State University
- 2. College of Science and Engineering, James Cook University

RESULTS/FINDINGS


Data and research from citizen data shows that some rural communities in Africa have high risk to water water contamination thereby increasing health challenges. The maximum risk index is 76.9% in Zambia. After our findings, there was national cholera outbreak in Zambia in December 2023.

Countries)

Title: Citizen Outputs for 2023

Outputs for 2025 (76 data points in 4 communities, 4