

The 9th International Electronic Conference on Water Sciences

11–14 November 2025 | Online

Remote Sensing-Based Water Balance Assessment of the Syr Darya and Amu Darya Basins

Sandunika Rathnayake¹, Ben Jarihani²

¹Department of Earth Resources Engineering, Faculty of Engineering, University of Moratuwa, Moratuwa 10400, Sri Lanka

²Earth and Environmental Science Department, College of Science and Engineering, James Cook
University 4811, Townsville, Australia

INTRODUCTION & AIM

The Syr Darya and Amu Darya river basins are among the most critical freshwater sources in Central Asia. However, hydrological monitoring across the region remains challenging due to the limited availability of ground-based observations. As a result, understanding long-term changes in water storage and availability has become increasingly difficult.

Aim

Data

Collection

Data

Processing

Water Balance

Analysis

Seasonal and

Interannual

Assessment

This study aims to quantify and evaluate basin-scale water balance dynamics in the Syr Darya and Amu Darya catchments from 2003 to 2024 using a fully remote sensing-based approach. This approach provides a solid framework for supporting water resource management and offers new insights into how climate variability affects water availability in Central Asia.

METHOD

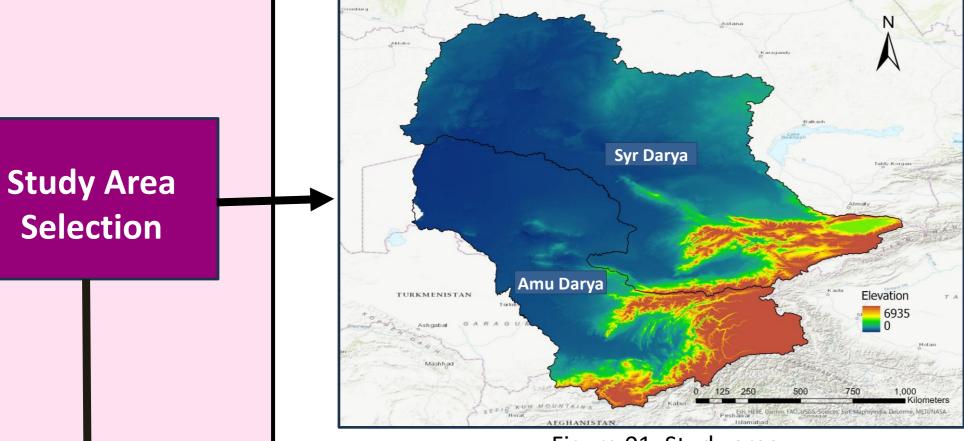
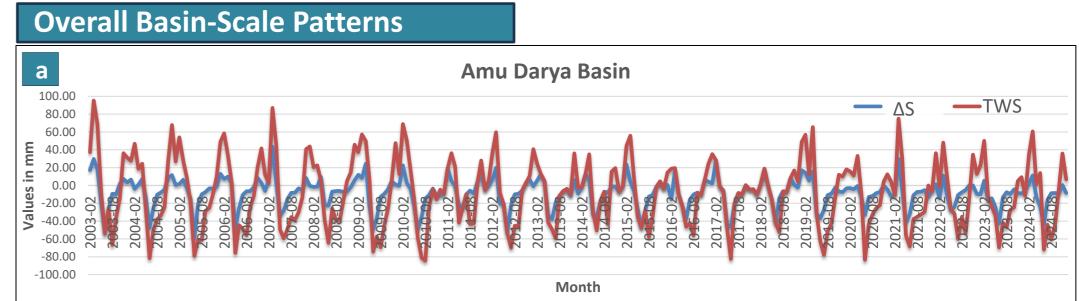


Figure 01: Study area

	Component	Source
	P (Precipitation)	CHIRPS
	AET(Actual Evapotranspiration)	MODIS
	R (Runoff)	ERA5-Land
	TWS (Total Water Storage)	GRACE/ GRACE-FO

- Extracted data within catchment boundaries.
- Temporal aggregation to monthly means.

 Computed monthly water storage change (ΔS):


$\Delta S = P-AET-R$

■ Compared △S with GRACE-based TWS.

 Evaluated storage gain and loss trends across different seasons.

Figure 02: Overall methodology flowchart

RESULTS & DISCUSSION

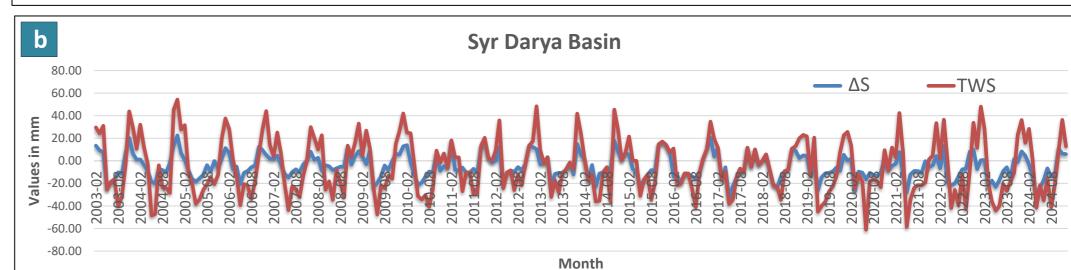


Figure 03: Basin-scale water balance variations for (a) Amu Darya and (b) Syr Darya basins

The GRACE-derived TWS Anomaly show strong correlation with the ΔS , confirming that remote sensing data effectively capture large-scale hydrological variability in both the Syr Darya and Amu Darya basins.

Seasonal Water Balance Dynamics

Autumn

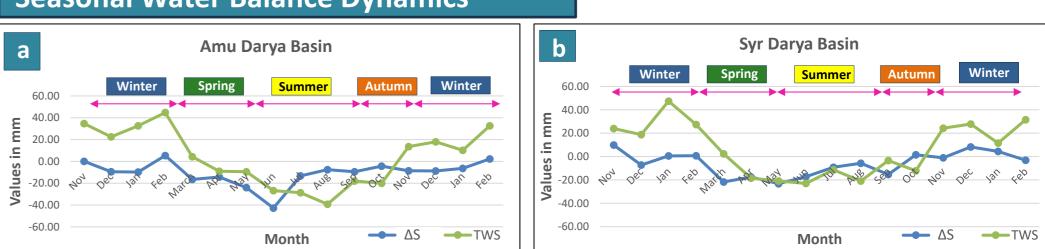


Figure 04: Seasonal water balance variations for (a)Amu Darya and (b)Syr Darya basins

Winter

Higher TWS values indicate storage gain, mainly from precipitation and snow accumulation.

Rapid storage depletion occurs as snowmelt and rising temperatures increase evapotranspiration and runoff.

Summer Lower values due to intense evapotranspiration and agricultural water withdrawals.

Gradual increment in storage linked to reduced evapotranspiration and the onset of precipitation.

CONCLUSION

Multi-satellite datasets offer a robust approach for monitoring basin-scale water balance dynamics and capturing seasonal hydrological variations across Central Asia, underscoring their importance for sustainable water management in data-scarce regions.

FUTURE WORK

Future work will include LULC (Land Use and Land Cover) and drought index analysis to refine the understanding of the water balance.

REFERENCES

- Aghayi, M. M., Tajrishy, M., & Guan, H. (2023). Assessing mountain block water storage changes in river basins using water balance and GRACE: A case study on Lake Urmia Basin of Iran. Journal of Hydrology: Regional Studies, 49, 101511. https://doi.org/10.1016/j.ejrh.2023.101511
- Xie, J., Xu, Y., Gao, C., Xuan, W., & Bai, Z. (2019). Total Basin Discharge From GRACE and Water Balance Method for the Yarlung Tsangpo River Basin, Southwestern China. Journal of Geophysical Research: Atmospheres, 124(14), 7617–7632. https://doi.org/10.1029/2018jd030025