

Variations of Neighbor Diversity for Fraudster Detection in Online Auction

Laksamee Khomnotai (Nakhon Ratchasima Rajabhat University) Jun-Lin Lin (Yuan Ze University)

1st International Electronic Conference on Entropy and Its Applications

3 - 21 November 2014

Introduction (1)

- Online shopping/auction websites have attracted both legitimate users and fraudsters.
- To evaluate the trustworthyness of a user, online shopping/auction websites often provide a reputation system
 - The reputation system requests the buyer and the seller of a transaction to give each other a rating
 - Users with higher reputation scores are more trustworthy, and consequently are more likely to attract sales
- To gain the higher reputation in a short period of time, fraudsters often commits the so-called "inflated reputation fraud"

Introduction (2)

- The inflated reputation fraud is accomplished by a group of collusive users who conduct many fake transactions for low-price merchandises and give each other good ratings
- In our recent work, we adopted Shannon entropy to quantify the neighbor diversity
- However, different ways to define and calculate diversity exist in the literature
- In this study, we adopt the four different definitions of diversity to calculate the neighbor diversity

Related Work (1)

- The earlier approaches used the properties derived from the transaction history, e.g. sum, average, and standard deviation of buying or selling price of merchandises in a period of time
- Most of the recent approaches used SNA to detect group of fraudsters
 - The characteristics such as *k*-plex, clique, betweenness, and *k*-core are often used to detect cohesive groups
 - *k*-core has been found to be the most effective for detecting fraudsters
 - Fraudsters frequently usually appear in *k*-core with $k \ge 2$

Related Work (2)

- Problem with *k*-core
 - Using *k*-core alone results in low precision
 - Applying both center weight (CW) and *k*-core improves the precision, but the recall is reduced
- Neighbor diversity
 - It was proposed to improve both precision and recall
 - The neighbor diversity on the number of received ratings provides an effective way to discern fraudsters from normal users

Variants of Neighbor Diversity (1)

- *x* denote a user
- *x*'s neighbors are the users who gave at least one rating to *x*
- The neighbors of *x* are partitioned into several classes based on the number of received ratings
 - *r* denote the number of received ratings of a userIf $0 \le r < 50$, then the user is placed into class 1
 - If $50 \times 2^{i-2} \le r < 50 \times 2^{i-1}$, then the user is placed into class *i*, where i > 1
- $p_i(x)$ denote the proportion of the *x*'s neighbors in the *i*-th class, and *n* denote the total number of classes. Then, all diversity constraints must hold:

$$0 \le p_i(x) \le 1$$
, for $i = 1$ to n
$$\sum_{i=1}^n p_i(x) = 1$$

Variants of Neighbor Diversity (2)

- Shannon Entropy Diversity
 - The neighbor diversity of x based on Shannon entropy is denoted as $D_s(x)$ and calculated as:

$$D_s(x) = -\sum_{i=1}^n p_i(x) \log_2 p_i(x)$$

• Max Weight Diversity and Min Weight Diversity

• The max weight diversity, denoted as $D_{max}(x)$, is the maximum of all $p_i(x)$ for i=1 to n, and defined as:

$$D_{max}(x) = \max_{i=1 \text{ to } n} p_i(x)$$

• The min weight diversity, denoted as $D_{min}(x)$, is calculated using the minimum of all $p_i(x)$ for i=1 to n, and defined as:

$$D_{min}(x) = 1 + (1 - n) \min_{i=1 \text{ to } n} p_i(x)$$

1st International Electronic Conference on Entropy and Its Applications

3 - 21 November 2014

Variants of Neighbor Diversity (3)

• Canonical *L*^{*p*}-norm Diversity

- The Canonical *L*^{*p*}-norm diversity, denoted as $D_{pow}(x)$, is similar to the *L*^{*p*}-norm except the outer exponent is $\frac{1}{pow-1}$ instead of $\frac{1}{pow}$, as shown below: $D_{pow}(x) = \left(\sum_{i=1}^{n} |p_i(x)|^{pow}\right)^{\frac{1}{pow-1}}$
- Canonical Shannon Entropy Diversity
 - The max weight diversity, denoted as $D_{cs}(x)$ and defined as:

$$D_{cs}(x) = e^{-D_s(x)} = e^{\sum_{i=1}^n p_i(x) \log_2 p_i(x)}$$

Experimental Settings (1)

- Data was collected from Ruten (<u>www.ruten.com.tw</u>), which is one of the largest online auction websites in Taiwan
- The dataset grows from a list of suspended users, and then conducts a level-wise expansion to include more users
- The dataset consists of 4,407 users
 - 1,080 are fraudsters
 - 3,327 are non-fraudsters (i.e. normal accounts)

Experimental Settings (2)

- Each neighbor diversity was calculate (i.e. $D_s(x)$, $D_{max}(x)$, $D_{min}(x)$, $D_2(x)$, $D_3(x)$ and $D_{cs}(x)$) and used to build the classifier
- Three classification algorithms from Weka were used to perform 10-fold cross-validation
 - J48 decision tree
 - Neural Networks (NN)
 - Support Vector Machine (SVM)

Experimental Results (1)

- Part one
 - Used only one of the neighbor diversities to build classifiers
 - The results are shown in Tables 1, 2 and 3
 - The best results of each classification algorithm are shown in bold
 - D_{min} performs the worst
 - D_{max} performs the best

Experimental Results (2)

• Table 1 J48 Performance (Part one)

Diversity	Accuracy(%)	Recall	Precision	F ₁ -measure
D_s	84.1843	0.8019	0.6420	0.7131
D_{max}	84.1616	0.8009	0.6417	0.7125
D_{min}	82.0059	0.6639	0.6251	0.6439
D_2	84.1162	0.7944	0.6422	0.7103
D_{3}	84.1162	0.8028	0.6403	0.7124
D_{cs}	84.2523	0.8028	0.6432	0.7142

Experimental Results (3)

• Table 2 Neural Network performance (Part one)

Diversity	Accuracy(%)	Recall	Precision	F ₁ -measure
D_s	83.1405	0.7620	0.6287	0.6890
D_{max}	83.8212	0.8120	0.6323	0.7110
D_{min}	82.0286	0.6648	0.6254	0.6445
D_2	83.7077	0.7870	0.6353	0.7031
D_{3}	83.7985	0.7991	0.6346	0.7074
D_{cs}	83.5943	0.7713	0.6364	0.6974

Experimental Results (4)

• Table 3 Support Vector Machine performance (Part one)

Diversity	Accuracy(%)	Recall	Precision	F ₁ -measure
D_s	83.1405	0.7306	0.6358	0.6799
D_{max}	83.5716	0.7556	0.6395	0.6927
D_{min}	82.0059	0.6639	0.6251	0.6439
D_2	83.0270	0.7222	0.6352	0.6759
D_{3}	83.2539	0.7361	0.6370	0.6830
D_{cs}	82.6639	0.6944	0.6334	0.6625

1st International Electronic Conference on Entropy and Its Applications

Experimental Results (5)

- Part one
 - Used *k*-core and CW and one of the neighbor diversities to build classifiers
 - The results are shown in Tables 4, 5 and 6
 - Compared to Part one, the addition of *k*-core and CW slightly improves
 - The improvement on accuracy is most significant with J48
 - The improvement on accuracy is less significant with NN and SVM

Experimental Results (6)

• Table 4 J48 Performance (Part two)

Diversity	Accuracy(%)	Recall	Precision	F ₁ -measure
k -core+CW+ D_s	85.8180	0.8731	0.6590	0.7511
k-core+CW+D _{max}	85.8861	0.8731	0.6604	0.7520
k-core+CW+D _{min}	84.1162	0.8278	0.6349	0.7186
k -core+CW+ D_2	86.1130	0.8685	0.6662	0.7540
k -core+CW+ D_3	86.2038	0.8704	0.6676	0.7556
<i>k</i> -core+CW+D _{cs}	85.8180	0.8741	0.6588	0.7513

Experimental Results (7)

• Table 5 Neural Network performance (Part two)

Diversity	Accuracy(%)	Recall	Precision	F ₁ -measure
k -core+CW+ D_s	83.7758	0.7787	0.6386	0.7017
k-core+CW+D _{max}	84.1616	0.8083	0.6400	0.7144
k-core+CW+D _{min}	82.3916	0.6620	0.6350	0.6482
k -core+CW+ D_2	83.9120	0.7981	0.6371	0.7086
k -core+CW+ D_3	83.9573	0.8028	0.6370	0.7104
<i>k</i> -core+CW+D _{cs}	83.8212	0.7843	0.6383	0.7038

1st International Electronic Conference on Entropy and Its Applications

Experimental Results (8)

• Table 5 Neural Network performance (Part two)

Diversity	Accuracy(%)	Recall	Precision	F ₁ -measure
k -core+CW+ D_s	83.7758	0.7787	0.6386	0.7017
k-core+CW+D _{max}	84.1616	0.8083	0.6400	0.7144
k-core+CW+D _{min}	82.3916	0.6620	0.6350	0.6482
k -core+CW+ D_2	83.9120	0.7981	0.6371	0.7086
k -core+CW+ D_3	83.9573	0.8028	0.6370	0.7104
<i>k</i> -core+CW+D _{cs}	83.8212	0.7843	0.6383	0.7038

1st International Electronic Conference on Entropy and Its Applications

Experimental Results (7)

• Table 6 Support Vector Machine performance (Part two)

Diversity	Accuracy(%)	Recall	Precision	F ₁ -measure
k-core+CW+D _s	84.4112	0.7685	0.6551	0.7073
<i>k</i> -core+CW+ <i>D_{max}</i>	83.0043	0.6835	0.6428	0.6625
k-core+CW+D _{min}	83.4581	0.7630	0.6353	0.6933
k -core+CW+ D_2	83.2539	0.7370	0.6368	0.6833
k -core+CW+ D_3	83.2993	0.7398	0.6372	0.6847
k-core+CW+D _{cs}	83.0951	0.7426	0.6320	0.6828

1st International Electronic Conference on Entropy and Its Applications

3 - 21 November 2014

Conclusions

- This paper proposes to use various methods to calculate diversity, and study whether these methods cause significant difference on the classification performance of fraudster detection
- The experimental results show that the diversity D_{min} performs the worst.
- The remaining five diversities (i.e., D_s , D_{max} , D_2 , D_3 and D_{cs}) achieve similar performance
- The addition of *k*-core and CW only slightly improves the classification performance of the neighbor diversity

Future Study

• Finding new features to work better with the neighbor diversity for fraudster detection is planned for future work