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Abstract: In this work, we begin by considering the qualitative modeling of bilological 
regulatory systems using Process Hitting, from which we define its probablistic counterart 
by considering the Chemical Master Equation. The last equation is efficienclty solved by 
consideing a separated representation within the Proper Generalized Decomposition 
framework that allows circumventing the so-called curse of dimensionality. Finally, model 
parameteres can be added as extra-cordinates in order to obtain a parametric solution of the 
model. 
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1. Introduction 

Using mathematical modeling to address large scale problems in the world of biological regulatory 
networks has become increasingly necessary given the sheer quantity of data made available by 
improved technology. In the most general sense, modeling approaches can be thought of as being 
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either quantitative or qualitative. Quantitative methods such as ordinary differential equations or the 
chemical master equation are widespread in the literature; when the model is well developed, the detail 
therein can be incredibly informative. However, these methods are not well suited for all applications. 
Quantitative models require an in depth knowledge of the reaction kinetics and generally fail as the 
problem size grows. The alternative approach, qualitative models, does not possess the same amount of 
detail but captures the essential dynamics of the system. In addition, qualitative models have a variety 
of analysis tools which can be applied regardless of the problem size. Gene regulation, as a sub-genre 
of biological regulatory networks, is characterized by large numbers of interconnected species whose 
influences depend on passing some threshold, thus, largely sigmoidal behaviors. The application of 
qualitative methods to these systems can be highly advantageous to the modeler. 

In this work, we begin by considering the qualitative framework of Process Hitting, revisited briefly 
in Section 2.1. A highly flexible model, Process Hitting captures the most important dynamics of the 
system with a relatively simple syntax. The structure of this syntax lends it to powerful static analysis 
tools which can be used to answer some of the most important questions about the model such as 
steady states or reachability without constructing the state space. Realistic models in gene regulation 
are immense and highly interconnected: even when considering a boolean space, the very enumeration 
of the possible states of the resulting system creates a combinatorial explosion. This is a frequent 
obstacle in the field of computer science and has been dubbed the curse of dimensionality. However, 
there are some questions for which one must access the underlying probability distribution associated 
with the Markov transitions of the qualitative model. In addition, gaining access to the probability 
distribution allows for a qualitative and intuitive analysis of the system as a whole. The most pervasive 
methods have historically been simulation-based, although there are some instances in which this 
becomes computationally infeasible. Here, we propose a method to solve the system by treating the 
Markov equations of a Process Hitting model with numerical techniques. A reduced-basis method, the 
Proper Generalized Decomposition (PGD) can be used to overcome the curse of dimensionality and 
provide fast, computationally inexpensive solutions to an otherwise intractable problem, as discussed 
in Section 2.2. In addition, PGD has certain qualities particularly favorable for applications to gene 
regulatory networks. Unknown parameters can easily be incorporated into the model at the cost of 
another dimension, as demonstrated in Section 3.2. 

2. Methodologies 

2.1. The Qualitative Model: Process Hitting   

Process Hitting is a powerful yet simple tool for the analysis of large regulatory networks. 
Historically related to the discrete models of Stuart Kauffman [1] and René Thomas [2], Process 
Hitting attempts to address problems of scalability in classical modeling methods while maintaining 
the highest degree of expressiveness possible. Formally a subclass of asynchronous automata, it relies 
on large degrees of abstraction to describe the system as a whole. All interacting species - whether they 
be enzymes, genes or proteins - are abstracted as sorts. These sorts are then subdivided into processes, 
which could represent concentration levels, spatial configuration, or any other form which has a 
distinct qualitative impact on the system. Processes interact with one another via actions, in which 
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processes hit one another to create a bounce to some new level of the same sort at a given rate. For 
gene regulatory networks, processes are often abstractions of relevant concentration ranges, discretized 
domains of real numbers, and actions represent activation and inhibition reactions. Figure 1 illustrates 
how to define sorts, processes and actions from a biological understanding of an interaction. Process 
Hitting relies on the initial construction of the most permissive dynamics, otherwise called generalized 
dynamics, in which no restrictions are placed on the potential behaviors. An example of this can be 
seen in Figure 1.  

 

Figure 1. Creating a Process Hitting action. In gene regulation, we consider two kinds of 
interactions between species: activation and inhibition. If a  is an activator of b , it is 
common to represent this by a signed, directed graph (left). These interactions have a 
characteristic form: unlike kinetic reactions, activation and inhibition usually depend on 
the regulator passing some threshold concentration in order to become effective (middle). 
Process Hitting (right) represents these reactions via actions: a  activates b  becomes a1  
hits (solid arrow) b0  to bounce (bashed arc) to b1 .  Generalized dynamics attempts to 
create the most permissive dynamics possible for the directed graph. Therefore, the 
absence of a  effectively acts as an inhibitor, adding the action a0  hits b1  to bounce to b0 . 
Every action can be associated with temporal and stochastic parameters, the reaction rate 
for example [3]. 

 

The general dynamics may then be successively enriched by the addition of cooperative sorts in 
order to best capture some known biological behaviors or eliminate undesirable behaviors. Cooperative 
sorts represent not species but, rather, the combined effects when multiple regulators interact 
cooperatively on a single target. These sorts are the combined space of the original species, thus must 
be updated such that the current state of the cooperative sort is compatible with the current state of 
each of its components. A visual explanation of the construction of a cooperative sort and its 
refinement of a Process Hitting model can be found in Figure 2. 

Although this is a very simplistic representation of the inner kinetics of a biological process, 
Process Hitting semantics allow us to easily model interactions with only partial knowledge of the 
logical functions encoded therein and pave the way for powerful static analysis techniques in order to 
study fixed points, reachability and cut sets which determine minimum criteria for reachability, in spite 
of the present combinatorial explosion [4,5]. Examples of Process Hitting at work can be found in 
Section 3, where we use static analysis to compare the fitness of the generalized dynamics model with 
that of the refined model. Furthermore, these tools are freely available online in a software called 
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PINT. We will not attempt to expound completely upon the details of Process Hitting here but, rather, 
point those interested towards [5] for a formal and thorough introduction to the modeling framework. 
As we progress to a biological application in Section 3, greater clarity will be given to the concepts 
described above, including the relevance of cooperative sorts and the power of static analysis. 
 

Figure 2. Refinement of a model via Cooperative Sorts. Here, a  is an activator of c  while 
b  inhibits c . The generalized dynamics of the system have been constructed on the left. 
But what should happen in the case that both a  and b  are present? According to the left 
hand model, the system will oscillate. If we know more about how the system should 
function, however, we would like to be able to include this information into our model. 
With general dynamics, we are unable to express logical gates in which multiple species 
exhibit deterministic combined effects on a target, such as a ∧ −b , or the presence of the 
activator without the presence of the inhibitor. In order to add this combined interaction 
and eliminate the oscillatory behavior, we must refine the Process Hitting model with a 
cooperative sort, ab . This sort will handle the interactions of a  and b  on c  while leaving 
the original species to interact with other elements as before. In exchange, more actions 
must be added such that a  and b  can effectively update ab  so that it truly reflects the 
current state of both elements. In our example, ab1,1  will not interact with c0 , thus c  

remains inactive. 

 

2.1. Treating Qualitative Systems with Numerical Techniques   

In order to address Process Hitting's global results, that is, the full and complete description of the 
systems behavior given an initial condition, we must consider the framework in a stochastic context. 
Process Hitting actions move the system from one state, z , to another, ẑ , at a given propensity which 



 5 
 

 

depends on only the current state and time, or aj (z,t) . As a memoryless random walk, each action 

corresponds to a Markov equation which tracks the net change in the probability of existing at a certain 
state and time:  

dΨ
dt

= aj (ẑ,t)Ψ(ẑ,t)
j
∑ − ak (z,t)Ψ(z,t)

k
∑  (1)  

The result is a system of linear, time dependent, differential equations, defined given an initial 
condition. Some of the most famous and broadly used techniques for addressing problems such as 
these have been simulation based. Simulation can become computationally expensive with respect to 
computing time and available memory. An alternative approach is the direct application of a numerical 
method to the Markov equations. Here, we propose Proper Generalized Decomposition (PGD) as an 
effective and well-suited technique for gene regulatory networks. 

2.2. Proper Generalized Decomposition 

Proper Generalized Decomposition [6,7] is a multi-linear numerical solver which assumes that the 
target, in this case, the probability distribution, can be written as a sum of a product of separable 
functions of the interacting species, Fi

j (zi ) ,  i = 1,,Nsp , and time, Ft
j (t) : 

 
Ψ(z,t) ≈ F1

j (z1)
j=1

M

∑ FNsp

j (zNsp
) ⋅Ft

j (t)  (2)  

PGD is performed iteratively, starting at some arbitrary guess and searching for sets of functions, 
one vector at a time, which will minimize the residual of the running sum. These functions are 
colloquially called modes, however, since the only objective is the reduction of the residual, there is no 
underlying notion that they represent the greatest source of variance, as is the case with Principal 
Component Analysis. Although the accuracy increases with every addition, we assume that only a 
limited number, M , of sets of functions are needed to capture the behavior of the system. If we 
consider a network of Nsp  species with N  possible levels, the resulting dimensionality is the M  sum 

of Nsp  functions of size N , or M ⋅N ⋅Nsp  in contrast to the original (Nsp )
N . We have not changed the 

state space but, rather, re-ordered it such that only one vector of size N , usually on the scale of 2 or 3, 
must be addressed at any given time, see Figure 3. Since all operations can be performed by canonical 
techniques and are highly parallelizable, iterations are generally fast and computationally inexpensive. 

Figure 3. Refinement Decomposition of a state space. This illustration shows how a 
multidimensional space, for example, a cubic space of three dimensions, 33  can be 
decomposed into the product of the individual dimensions, 3× 3 . This mathematical 
property is exploited by PGD in that we search for the individual vectors which are of 
relatively small size, never touching the full state space. In such a way, we move from 
(Nsp )

N  to M ⋅N ⋅Nsp , as M sets of these vectors must be found. 
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3. Application to a Biological Network  

It is easier to understand the concepts of Process Hitting and PGD, as well as to see their individual 
and combined benefits, when seen in action in the context of a realistic application towards a gene 
regulatory network. Here, we investigate a medium scale model of the ErbB signaling pathway which 
regulates a cells transition from G1 to S life phase, an important checkpoint which determines whether 
a cell should divide, delay division or enter a quiescent state. Over expression of ErbB is associated 
with many kinds of cancer, and drugs which target it and its receptor are common treatments for 
breast, lung and colon cancers. The directed graph for this network was taken from [8], where twenty 
species interact according to Boolean rules. The directed graph can be found in the appendix for 
reference. We begin our application by constructing a Process Hitting model from this Boolean 
predecessor, taking the most permissive, generalized dynamics, followed by its refinement via the 
incorporation of cooperative sorts. The impact that this refinement has on both the static analysis and 
application of PGD will be investigated, both in terms of expressiveness and complexity. Finally, the 
potential of PGD's capacity to easily incorporate model parameters as extra coordinates will be 
demonstrated by taking many potential values for the rates of two reactions in the directed graph. 

The translation of a Boolean model to the generalized dynamics of Process Hitting is relatively 
straight forward, as shown in Figure 2: the absence of an activator effectively serves as an inhibitor 
and vice versa. The formal relationship between Boolean networks and Process Hitting can be found in 
[9]. At this point, we would like to investigate the model to see if it adequately reflects our biological 
understanding of the system as a whole: are experimentally demonstrated states reachable, are 
impossible states unreachable, and are there fixed points if steady state behaviors exist? These 
questions constitute sanity checks, making sure our model is not essentially flawed from the beginning. 
The structure of the system, see appendix, suggests two species of experimental interest: EGF as an 
input, having no predecessor, and pRB as output, having no successor. Using these two species, we can 
easily formulate simple reachability criteria in order to perform sanity checks on our model. We 
consider a system at rest, in which all components begin in their inactive state. If no changes are made 
on the input protein, EGF when it is inactive, we expect that the system will remain at rest and that no 
change is to occur in the output protein. However if EFG is introduced, the signal should be able to 
propagate to the output, pRB. In order to be a feasible model, the system must pass these two criteria. 
Results from static analysis, shown in Table 1 provide good evidence that the generalized dynamics 
are too permissive and do not accurately capture the biological behaviors which are essential for a 
functioning model: not only are we are unable to find any fixed points within the system, of which we 
do expect to find at least one, but the protein pRB may become sporadically activated in a globally 
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inactive system, failing the first sanity check. Therefore, we must refine the model, incorporating the 
suggested logical gate rules from [8] via cooperative sorts. In doing so, we recapture these vital 
phenomena, finding three fixed points and passing both sanity checks. These results were obtained in a 
matter of seconds, using simple commands in freely available software, allowing us to efficiently alter 
our model before investing time in more computationally expensive analysis. 

Table 1. Results for ErbB models using generalized dynamics and a refinement with 
cooperative sorts. Here, the two models were tested using two three sanity checks related 
to our biological understanding of the system: the presence of fixed points, the lack of 
impossible behaviors and the presence of demonstrated behaviors. In order to be 
considered a functioning model, pRB should remain at rest when the system is universally 
inactive, including the absence of input protein EGF. However, in the presence of EGF, a 
signal should be able to propagate through the system, potentially activating pRB. We see 
that, while the generalized dynamics were able to propagate a signal from EGF to pRB 
(EGF present), it was not able to prevent sporadic activation of pRB in a system at rest 
(EGF absent), nor find any fixed points. 

 

3.1. Cooperative Sorts in the context of PGD 

The Markov Equations of the Process Hitting actions provide a system of DEs to which we can 
apply PGD. Each species occupies a dimension of the state space. With two processes to each sort, the 
final problem is of size 220 , or over one million possible states. The underlying probability distribution 
is a function of these species and time. Our goal is to approximate this solution by a summation of 
separable functions  

 
Ψ(z,t) ≈ FEGF

j (EGF)
j=1

M

∑ FpRB
j (pRB) ⋅Ft

j (t)  (3)  

In the case of a Process Hitting containing only the generalized dynamics, this is an appropriate and 
accurate method. However, once cooperative sorts are incorporated into the qualitative model, the 
cooperating species can no longer be represented by separable functions. To satisfy the enriched 
model, we may simply combine those dimensions which participate in cooperative sorts. While this 
does create vectors which grow exponentially with each added species, it is biologically implausible 
that more than three or four species would participate in a cooperative influence on a single target. 
Therefore, we can expect this growth to be cut short long before the dimension of a cooperative sort 
becomes too large. As we combine the state spaces so that they reflect their cooperative sorts, the error 
associated with PGD solutions as compared to the solution obtained from simulation techniques 
decreases. But what is to be done when one species participates in multiple cooperative sorts? The 
species cannot be represented twice in the decomposition, so we cannot construct two separate entities 
for the cooperative sorts as we would like. Rather, if we simply combine the two cooperative sorts into 
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a single element, we return to the most accurate representation of the system, as each species is only 
represented once, but any non-separable behavior can be taken into account. Again, while it is possible 
to experience exponential growth in the combination of cooperative sorts, it is very rare biologically 
that one species would be participant in more than a handful of interactions. The solutions that we 
obtain from PGD are approximations of the full probability distribution corresponding to the Markov 
equations created by Process Hitting. From these probability distributions, we are able to make fast 
analysis of global behaviors of the system: rather than being limited to asking the questions answerable 
using static analysis, a modeler can watch the system evolve through time and make general statements 
on the qualitative behavior. 

3.1. Incorporation of Unknown Parameters 

It is often the case, especially in a growing field such as geneomics, that elements of a regulatory 
network are disputed or unknown. Researchers may come to very different conclusions about the 
parameters which fit a particular system. With simulation techniques, each new set of parameters 
requires a full repetition of all of the trials, limiting the modeler and leading to ad hoc choices made for 
the sake of feasibility. However, PGD offers a simple way of incorporating these unknown parameters 
directly into the model, making it possible to obtain an approximate solution for a range of values all at 
once [10]. The parameter is encoded as one of the separable spaces and is included at the cost of one 
dimension added to the overall solution space. For our example, perhaps one of the regulating 
reactions is difficult to study separately from the system as a whole, say, interactions involving p27 
and p21. Unlike the first half of the directed graph which is simply an activation cascade, these 
proteins are involved in both inhibiting and activating relationships, so changes to their rate laws 
should more greatly influence the final expression of pRB. We would like to incorporate many 
potential values of the action firing rate r  into our model, anywhere between two times faster and two 
times slower than the other reactions in the system. Since our representation requires discretization, we 
consider forty equally spaced values between r 2  and 2r . Our decomposition of Ψ(z,t)  is changed 
slightly in order to accommodate the parameter for the range of possible values: 

 
Ψ(z,t,r) ≈ F1

j (z1)
j=1

M

∑ FNsp

j (zNsp
) ⋅Ft

j (t) ⋅Fr
j (r)  (4)  

Wile simulation run time grows linearly with each element, 40 times longer since there are 40 
values in the discretization, to obtain a result, we are able to derive a solution in relatively equal time 
using PGD. In figure 4, we see three solutions for the protein pRB given different values of the rate 
parameter, r 2 , 3r 2  and 2r . These comparably fast results allow us to perform general analysis on 
the network by directly observing how the global behavior changes with parameters. 

Figure 4. Sample of results from incorporating model parameters as dimensions in PGD 
solution. Here, we have selected three potential values for the firing rate r , r 2  (left), 
3r 2  (middle) and 2r (right), for any interaction involving the proteins p21 or p27. The 
resulting behaviors of five proteins along the chemical pathway are shown here. Since the 
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system is binary, active expression is plotted in yellow and inactive in blue, following their 
probabilities on the y-axis. Notice that in all cases, behavior is equivalent until around 1.75 
seconds, when the firing cascade reaches p21 and p27. Some signals are simply amplified, 
whereas others, such as p21 and pRB, develop more complicated behaviors as the firing 
rate increases, perhaps suggesting cyclical or dampening behaviors. 

 
 

3. Evaluation and Analysis  

Up to now, we have presented a new method of approaching discrete models of gene regulatory 
networks, uncovering briefly the origins of its individual components, Process Hitting and PGD, and 
applying it to a real biological system. As bioinformatics grows and many new methodologies are 
proposed, however, it is increasingly important to discuss in a straightforward manner how well our 
method performs, highlighting both its merits and weaknesses. 

We began our approach by considering the discrete modeling framework of Process Hitting. This 
approach allows for a great extent of abstraction in the development of a regulatory model and comes 
with a well-developed analysis toolbox, making it an attractive starting framework. However, the 
application of PGD to Markov Equations would be effective for any discrete modeling type which can 
be described as such. Process Hitting does have an advantage in that the species which interact in 
nonlinear ways and thus must be represented together in the decomposition are well defined as 
cooperative sorts in the very construction of the model. Once the Markov Equations have been 
provided, the method is relatively straightforward; PGD is a well-founded numerical method with 
thoroughly documented implementations. 

As for the results themselves, there are several points to touch on: ease of analysis, model 
validation, and accuracy. One of the most interesting aspects of this approach is the nature of the 
results: a full probability distribution as an approximate solution to a set of equations. As demonstrated 
in Figure 4, the output lends itself to visualization on an individual scale, that is, for each protein 
involved. The behavior of a gene or protein can be described in very plain and qualitative terms, even 
for elements whose evolution is complicated and never reaches steady state behaviors. However, the 
apparent behavior can only be taken at face value: while a protein may appear to oscillate or tend to a 
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certain value, the solution is only valid for the limited time frame in which it is analyzed and is not tied 
to a mathematical principle governing its evolution. Furthermore, since the solution is approximative, 
it is possible that species whose static analysis proves total inactivation or activation would be found 
slightly activated or inactivated in the PGD solution, a potentially important distinction in the world of 
genomics. In such instances, the static analysis and numerical analysis may be found in conflict with 
one another, compromising the accuracy of the resulting analysis.  

4. Conclusions  

In the case of gene regulatory networks, there are many reasons why a modeler might choose the 
application of qualitative methods, one of which is Process Hitting. Process Hitting offers many 
advantages for large scale, which are often the more realistic, systems in the form of static analysis 
tools. These analysis tools alone, however, cannot provide the complete and intuitive solution of the 
system as a full probability distribution for each state over time. By translating Process Hitting actions 
to Markov equations, we are able to treat a system of PDEs directly. Proper Generalized 
Decomposition has proven efficient in solving Process Hitting models. As opposed to simulation 
techniques, which have been historically been the preferred methodology, PGD can provide full 
solutions, including multiple unknown parameters, with a single run. Here, we have shown some of the 
potential of this method, applying a combination of static analysis and numerical tools in order to 
maximize the expressiveness and understanding of a qualitative model. Only the basic elements of 
Process Hitting have been incorporated into the Markov equations considered, that is, actions with 
simple rate laws. Including temporal and varied stochastic features into these equations would further 
increase its potential. 

Appendix: The ErbB Signaling Pathway 

For this work, we used a Boolean model of the ErbB signaling pathway for the regulation of G1/S 
cell cycle transition as developed by [8]. In this article, the authors began by constructing a model from 
the literature, then proceeded to refine the model via network reconstruction. Although these 
refinements proved useful in the selection of novel targets for gene therapy, we would like to focus on 
the initial derivation of the model in which all reactions correspond to cited regulations. However, we 
will use the logical rules suggested within this article for the refinement of the Process Hitting model 
via cooperative sorts, shown in Table 2. 

Table 2. The proposed logical rules for species with more than one regulator. 
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EGF (epidermal growth factor) binds to ErbB receptors, of which there are four structural variants, 
three thought to be involed in this network. These receptors are functional when they form 
heterodimers, excluding ErbB1 which is able to function as a homodimer as well. Functional receptors 
transmit signals to AKT1, an apoptosis-inhibiting transmitter, and MEK1, a protein kinase. Along with 
transcription factors c-MYC and ER-α , these entities downregulate kinase inhibitors p21 and p27 
while upregulating the cyclins (CycE1 and CycD1) needed to activate their respective cyclin 
dependent kinases (CDK). These CDKs will work to phosphoralize, and therefore inactivate, the 
retinoblastoma protein (pRB). Only when this protein is inactive can the E2F group of transcriptional 
factors required for DNA replication and, therefore, cell proliferation. Although the interaction 
between CDKs and pRBs is inhibitive, we have kept the activations as indicated by the authors, using 
pRB as a proxy for it's following and more interesting product, E2F. In addition, we have included the 
logical rule proposed for Cyclin D presented in their work. 

Figure 6. The interaction graph for ErbB mediated G1/S cell cycle transition. Here, 
elements directly related to the ErbB signaling portion of the network are represented by 
boxes, while the elements related to kinase activity are represented by circles. Activation 
interactions are shown in green arrows and inhibition in red blunted arrows. Since this is 
the initial, most basic network derived from the literature, no combined effects requiring 
Boolean logic gates are shown. 
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