# The 9th International Electronic Conference on Water Sciences



11-14 November 2025 | Online



# Title:Performance Evaluation and Energy Optimization of Centrifugal Pumps for Agricultural Water Systems in Pakistan

**Author: Hafiz Muhammad Safdar Khan** 

Affiliation: Faculty of Agricultural Engineering and Technology, University of Agriculture Faisalabad, Pakistan Email: muhammad.safdar@uaf.edu.pk

**Conference: The 9th International Electronic Conference on Water Sciences (2025)** 



#### INTRODUCTION

- Pakistan's agriculture is facing dual challenges of water scarcity and energy costs.
- Inefficient groundwater pumping systems waste significant
- energy resources.

#### **OBJECTIVES**

- 1. Evaluate hydraulic performance of local centrifugal pumps.
- 2. Quantify energy efficiency and hydraulic losses.
- 3. Recommend optimization strategies for sustainable irrigation.

## METHOD

- Field and lab testing conducted at Golden Pumps Pvt. Ltd., Gujranwala.
- Eight centrifugal pumps with impeller diameters between 180–222 mm.
- Measured discharge, head, and power input at various speeds.
- Calculated efficiency and head losses through fittings (bends, reducers, valves).

### **DISCUSSION**

- Proper pump selection improves the irrigation efficiency.
- Optimized sizing and performance monitoring can reduce the energy waste in agriculture
- Results supports the sustainable water energy management

# CONCLUSION

- Optimized pump selection can save up to one-third of energy use.
- Head losses in fittings (bends, reducers, check valves) are significant.
- Performance monitoring and matching motor impeller pairs improve sustainability.

# **FUTURE WORK**

- Integration of smart sensors for real-time pump monitoring.
- AI-based pump selection models for localized conditions.
- Renewable energy (solar-powered) pumping integration.

# **ACNOWLEDGEMENT**

The authors gratefully acknowledge the cooperation of Golden Pumps Pvt. Ltd., Gujranwala, Pakistan.

# RESULTS

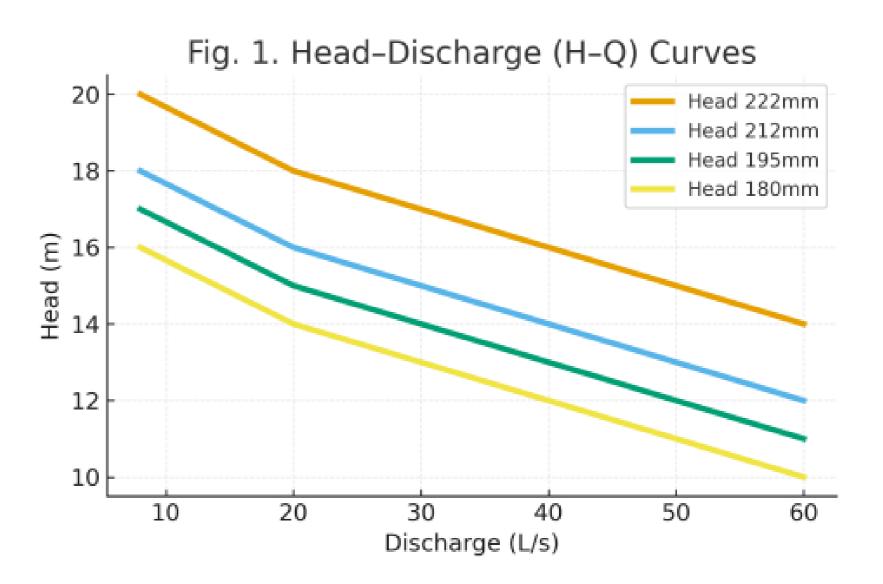



Fig. 2. Efficiency vs. Impeller Diameter

78

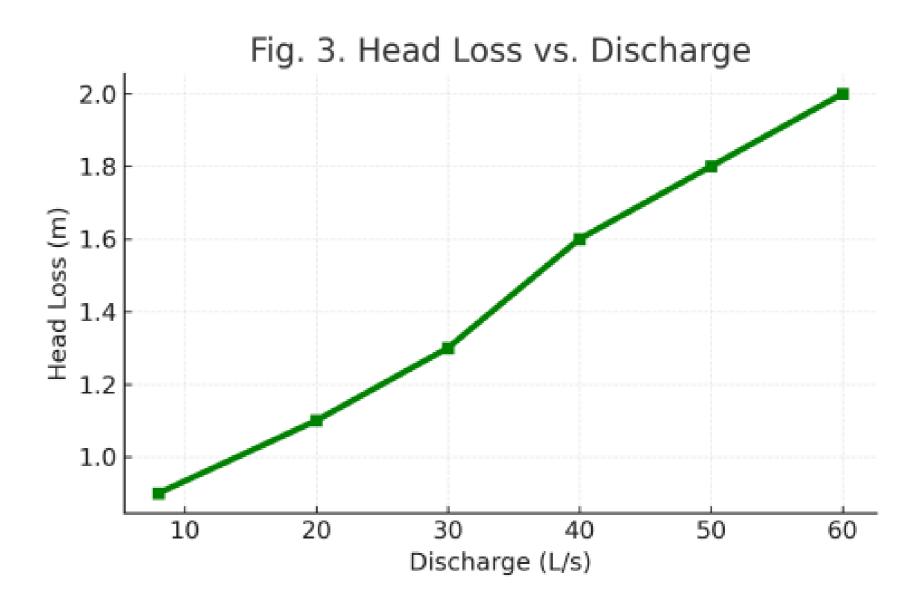
76

74

70

68

180


190

200

210

220

Impeller Diameter (mm)



# REFERENCES

- 1. Zheng, Y.; Meng, L.; Zhang, G.; Xue, P.; Wang, X.; Zhang, C.; Tian, Y. Study on Impeller Optimization and Operation Method of Variable Speed Centrifugal Pump with Large Flow and Wide Head Variation. Water 2024, 16(6), 812.
- 2. Liu, Z.; Ji, L.; Pu, W.; Li, W.; Yang, Q.; Zhang, X.; Yang, Y.; Shi, W.; Tian, F.; Jiang, S.; et al. Research on Efficiency Improvement Technology of Wide Range Centrifugal Pump Based on Genetic Algorithm and Internal Flow Loss Diagnosis. Water 2024, 16(23), 3402.