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Abstract: The present paper revolves around two argument points. As first, we have 
observed a certain parallel between the reliability of systems and the progressive disorder 
of thermodynamical systems; and we import the notion of reversibility/ irreversibility into 
the reliability domain. As second, we note that the reliability theory is a very active area of 
research which although has not yet become a mature discipline. Theoretical researchers 
should continue along the way opened by Gnedenko, and we use the Boltzmann-like 
entropy to pursue this objective. This paper shows how the results comply with the 
deductive logic which is typical of mature science. 
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1. Introduction 

The reliability of machineries and the mortality of individuals are topics of great interest for the 
scientific community and common people as well. The reliability theory is an abstract approach aimed 
to gain theoretical insights into engineering and biology. Presently, the vast majority of researchers 
make conclusions about population based on information extracted from random samples; in short 
authors follow the inductive logic.  
A mature discipline instead complies with the deductive logic, that is to say theorists derive the results 
from principles and axioms using theorems. First Gnedenko takes this course in the reliability domain 
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[1]. He assumes that the system S is a Markov chain and from this assumption concludes that the 
probability of good functioning without failure is the general exponential function  
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Where the hazard function λ(t) determines the reliability of the system in each instant 

 
λ(t) = – P' (t)/P(t).                                                              (2)       

 
Gnedenko demonstrates that probability distribution (1) comes from the conditional probability typical 
of Markov chains. Eqn. (1) originates from the operations that a systems executes one after the other 
and Gnedenko’s inference can be summarized as follows 
 

Chained Units ⇒ General Exponential Function 

 
Several authors believe that the function λ(t) follows the so-called bath tube curve . They hold that a 
new system has the decreasing hazard rate in the early part of lifetime where is undergoing burn-in and 
debugging of machines, and biological systems are growing and bulking. This period is followed by an 
interval when failures are due to causes resulting in a constant failure rate. The last period of life is one 
in which the system is experiencing the most severe wear out and thus has an increasing failure rate. 
We can make three remarks: 
 

1) The bath tube curve is not established on the basis of the deductive logic so far. 
2) Significant evidence disproves the bath tube curve [2]. 
3) Experimentalists have found that λ(t) exhibits very different trends in equipment and living 

beings.  
 
The methods followed so far to determine the hazard rate prove to be insufficient and in our opinion 
we should proceed with the deductive logic inaugurated by Gnedenko in the reliability domain. 
This is the objective of the present mathematical work. 

 

2. A Lesson from Thermodynamics 

The second law of thermodynamics claims that the entropy of an isolated system will increase as the 
system goes forward in time. This entails – in a way – that physical objects have an inherent tendency 
towards disorder, and a general predisposition towards decay. Such a wide-spreading process of 
annihilation hints an intriguing parallel with the decadence of biological and artificial systems to us. 
The issues of reliability theory are not far away from some issues inquired by thermodynamics and this 
closeness suggests us to introduce the entropy function for the study of reliable/reparable systems.  
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We mean to detail the Markovian model and assume that the continuous stochastic system S has m 
states which are mutually exclusive 
 

S = (A1 OR A2 OR .... OR Am),                 m > 0.                       (3) 
 

Each state is equipped with a set of sub-states or components or parts which work together toward the 
same purpose. Formally, the generic state Ai (i=1, 2,.. m) is equipped with n sub-states  
 

Ai = (Ai1 AND Ai2 AND ....  AND Ain),              n > 0.                          (4) 
 
We consider that the states of the stochastic system S can be more or less reversible [3], and mean to 
calculate the reversibility property using the Boltzmann-like entropy Hi where Pi is the probability of Ai 
 

Hi = H(Ai) = ln (Pi). 
 
We confine our attention to: 
– The functioning state Af and the reliability entropy Hf ;  
– The recovery state Ar and the recovery entropy Hr. 
 

The meanings of Hf and Hr can be described as follows.  
When the functioning state is irreversible, the system S works steadily. In particular, the more Af is 
irreversible, the more Hf is high and S is reliable. On the other hand, when Hf is low, S often abandons 
Af in the physical reality. The system switches to Ar since S fails and is unreliable . The recovery 
entropy calculates the irreversibility of the recovery state, this implies that the more Hr is high, the 
more Ar is stable and in practice S is hard to be repaired  and/or cured in the world. In sum Hr 
expresses the aptitude of S to work or to live without failures; the entropy Hr illustrates the disposition 
of S toward reparation or restoration to health. 
 

 

3. Basic Assumption 

Real events are multi-fold. Mechanical, electrical, thermal, chemical and other material effects 
interfere in the physical reality. The generic component Aig (g=1,2,..n) involves a series of collateral 
physical mechanisms that run in parallel Aig. Universal experience brings evidence how side effects 
change Aig. Parallel interferences work by time passing and at last impede the correct functioning to Aig. 
Thus we can establish a general property for the system components  
 

The part Aig degenerates as time goes by.                                              (5) 
  

For example, Carnot defines an abstract model for the heat engine that includes two bodies at 
temperature T1 and T2 (T1 ≠ T2), the gas Aig does the mechanical work via cycles of contractions and 
expansions. The mounting disorder of the molecules results in the decreasing performances of Aig 
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which is qualified by the thermodynamic entropy. In other words, a side effect progressively harms the 
gas of the heat engine.  

4. Simple Degeneration of Systems 

We detail (5) and establish the regular degeneration of components . The reliability entropy of Aig 
decreases linearly as time goes by 
 

Hfg = Hfg (t) = – cg t.                             cg > 0                       (6) 

 
From hypothesis (6) one can prove that the probability of good functioning Pf follows the exponential 
law with constant hazard rate [4] 

 
Pf = Pf (t) = e –c t,                c  > 0.                                   (7) 

( )tλ = c .                                                                      (8) 
 

5. Complex Degeneration of Systems 

When assumption (6) comes true over a certain period of time, the components Af1, Af2, ...Afn worsen to 
the extent that they set up a cascade effect [4]. The cascade effect consists of the generic part Aig that 
spoils one or more close components while the system proceeds to run. A cascade effect can be linear 
or otherwise compound. 

In the first stage we assume the component Aig harms the close part Aik and this in turn damages 
another one and so on. 

The cascade effect is linear.                                                    (9) 

Suppose the linear cascade effect occurs while principle (6) is still true of necessity, one can prove that 
the probability of good functioning is the exponential-power function  
 

      ( )
nt

f fP P t e ab −= = ,           a, b > 1.                            (10) 

 
The hazard function is a power of time 

  
1( ) nt tλ −= a                                                                (11) 

 
In the second stage we suppose that the component Aig damages the components all around 
 

The cascade effect is compound.                                             (12) 
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This hypothesis – alternative to linear waterfall effect – yields that the probability of functioning is the 
exponential-exponential function and the hazard rate is exponential of time  

 

   ( ) ,
te

f fP P t eg d−= =            g, d  > 1.                          (13) 

( ) tt eλ = d  

6. Conclusive Remarks 

A) Chaining implies a true dependency between chained operations, and Gnedenko derives the general 
exponential function from this dependency property. The present work follows a different course using 
the Boltzmann-like entropy and develops the ensuing inferences:  
 

Regular degeneration of system’s components ⇒ Exponential Function 
Regular degeneration + linear cascade effect ⇒ Exponential-Power Function 

Regular degeneration + composite cascade effect ⇒ Exponential-Exponential Function 

(15) 
 
Both the assumptions and the conclusions of (15) fit with Gnedenko’s work. In particular: 

 Assumptions of (15): We model S by mean of (3) and (4) that are Markovian chains. The 
regular degeneration of Aig and the cascade effects make explicit some special behaviors of 
chained operations. 

 Conclusions of (15):  Mathematical results (7), (10) and (13) are special cases of function (1). 
 
The present theoretical frame proves to be consistent with Gnedenko’s work. 
 
B) During the middle age the organs of appliances and biological beings often degenerate at constant 
rate in accordance with (8). Machines and equipment have frequently a linear shape and the 
probability of good functioning follows the Weibull distribution during ageing that corresponds to 
(10). The body of animals and humans appear rather intricate; during ageing compound cascades 
effects result in the Gompertz distribution that conforms to (13).  
In short, the theoretical results obtained in this work match with empirical investigations. Differently 
from the statistical modes, the present approach adopts the deductive logic and relates the system 
decay to precise causes. 
 
C) Each result in (15) has been obtained from precise hypotheses, and those hypotheses may come true 
during the system juvenile period, the maturity and the senescence alike. For example the hazard rate 
of Hidra magnipapilata is constant throughout the entire lifetime [5]. This empirical data means that 
the organs of Hidra magnipapilata are subjected to regular degeneration from the birth to the death and 
do not undergo any special collateral effect during the lifetime.  
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Therefore, the present frame does not hold that the bath tube curve is systematically true in the world 
in accordance with statistical enquiries.  
 
In conclusion, remarks A, B and C show how the Boltzmann-like entropy sustains a promising 
approach for developing a deductive theory of aging integrating mathematical methods with 
engineering notions and specific biological knowledge. 
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