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Abstract: This paper discusses the major assumptions of influential ecological approaches 

on the human movement variability in sports and how it can be analyzed by benefiting from 

well-known measures of entropy. These measures are exploited so as to further understand 

the performance of athletes from a dynamical and chaotic perspective. Based on the 

presented evidences, entropy-based techniques will be considered to measure, analyze and 

evaluate the human performance variability under three different case studies: i) golf; ii) 
tennis; and iii) soccer. At a first stage, the athletes’ performance will be analyzed at the 

individual level by considering the golf putting (pendulum movement) and the tennis serve 

(ballistic movement). Under these gestures, the approximate entropy is considered to extract 

the variability inherent to the process variables. Afterwards, the athletes’ performance will 

be analyzed at the collective level by considering the soccer case (team sport). To that end, 
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both approximate entropy and Shannon’s entropy are mutually considered to assess the 

variability of football players’ trajectory. To outline the applicability of entropy-based 

measures to analyze sports, this article ends with an overall reflection about the potential of 

such measures towards an increased understanding on the overall human performance. This 

methodology proves to be useful to provide decisive information and feedback for coaches, 

sports analysts and even for the athletes.  

Keywords: sport sciences; chaos and nonlinear dynamics; entropy; performance analysis. 

PACS Codes: 37Fxx; 37Mxx; 01.80.+b; 05.45.Tp 

 

1. Introduction 

Humans can perform an incredibly wide range of movements [1]. In all of those movements, even in 

pendulum and very regular ones, such as the golf putting, the variability is always inherent to human 

actions [2]. One of the most understandable reasons behind such variability is the large number of 

degrees of freedom from human’s motor system [3]. These degrees of freedom are associated to the three 

groups of human joints (immovable joint, amphiarthros is joint and diarthrosis/synovial joints) which 

accounts for a large range of motion combinations [4]. Despite human variability, it is well known that 

there is an invariant part of each specific action which can be observable from repetition to repetition 

[5]. The more the invariant part of a specific action is, the more it can be deemed as stable. Nevertheless, 

even the most stable movements, such as standing still in the same place, inevitably have small 

oscillations inherent to the muscles contractions and joints protection cycles [6]. Therefore, one can state 

that the variability represents the complexity of a given movement, or it may simply represent an early 

stage of motor learning or the presence of task constraints [7]. In other words, a lower level of variability 

arises from a more adaptive organization over the individual degrees of freedom, while, in contrast, a 

higher level of variability is related to a lower dimensional output from individual effectors [5]. These 

kinds of evidences are imperative in many fields of human interaction, such as medicine, physiotherapy 

and sports. In the latter, the ability an athlete has in performing a stable action even under complex 

scenarios is challenging and, in spite of that, training is necessary [2].  

To understand how variable or unstable a given athlete is, most of the proposed approaches presented 

in the literature have been focused in studying the product variables (e.g., number of goals, points or any 

other final outcome). In these approaches, the variability is usually expressed as a standard statistical 

measure, such as the standard deviation associated with the final outcome [5]. Nevertheless, the 

variability of an athlete must be understood and perceived during the execution of the task, i.e., within 

the process variables (e.g., angular positioning of joints, acceleration or muscles contraction). Process 

variables are key elements that may help coaches in identifying the appropriate constraints associated to 

a given athlete and increase the athlete performance. Bearing this idea in mind, next section overviews 

the current state-of-the-art, discussing how variability has been used and understood in sport sciences as 

a measure of the human performance. 
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1.1. Related Work 

Many researchers interpret variability in sport sciences as a mechanism to force athletes into adapting 

and stabilizing their actions to constraints (e.g., individual, task and environment) [8]. The variability 

then contributes to an adaptive human motor control and may be adjusted to produce a desirable 

outcome. For instance, in most sport modalities, it is noticeable that athletes’ morphologic (e.g., weight 

and height) and functional (e.g., motivation and fatigue) characteristics may affect their performance. 

These characteristics are intrinsic to the inter-individual profiles that distinguish athletes during the 

process of motor execution [9]. 

Human movement variability can be defined as the typical variations that are inherent to the motor 

performance and which may be observed across multiple repetitions of a given task [10], [11].  So, we 

may easily perceive that an athlete has to adapt to the multiple conditions of variability. Such adaptation 

involves a variety of strategies generated to solve individual motor problems. As an example, the studies 

of [8], [9], [19] claimed that a golfer faces several constraints, being susceptible to a high variability of 

practice conditions that require systematic adaptation mechanisms. The athlete is then faced with 

multiple possible ball trajectories (e.g., either linear or curvilinear), slopes (e.g., either ascending or 

descending), adverse weather conditions (e.g., sun, rain, wind and snow) and different greens (e.g., short 

grass, high grass, ill-treated grass, grass with holes and sand, among others). Despite these claims, 

information concerning a specific way that an athlete is able to adapt his, or her, process to a given 

context and how variability conditions affect that is scarce. Henceforth, one may consider it as decisive 

to understand how variability can be perceived within sport movements.  

The study of [9] concluded that the problem of individuality in sport movements is not confined in 

ideal or standardized techniques, but withholds a variety of strategies that may be employed according 

to the specificity of each athlete. In other words, nonlinear techniques, like entropy-based measures, 

provide quantitative and qualitative information about a certain motor system tendency by tracking 

human movement patterns [12]. Unlike cognitive theories that support traditional motor control models, 

e.g., [13] and [13] considers variability to be a negative factor in learning, the nonlinear perspective 

supports that “embedding chaos” into the process may be necessary to establish new human movement 

patterns [15]. However, only some few studies, such as [9], [6] and [17], analyzed sports from a nonlinear 

perspective, using tools like entropy. This recent use of nonlinear measures in sports have fostered the 

evaluation of not only the magnitude of the human variability, but also its temporal structure, thus 

allowing to describe complex conditions that cannot be described using only linear tools [12]. In fact, 

according [12], traditional linear tools may even “conceal” the true structure of motor variability.  

In spite of this, nonlinear techniques, like Shannon’s Entropy and the Approximate Entropy, are 

extremely useful to further analyze the human movement within sports context. These measures aim for 

the evaluation of the overall temporal variability structure, quantifying and qualifying how a set of values 

in a particular distribution are organized in time or even across a range of time scales [11], [12]. These 

advances shall open new research topics under the training and tactical scope, thus narrowing the gap 

between sports sciences and sports coaching [16]. 
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1.2. Statement of Contribution 

This paper starts by presenting a brief overview on entropy-based measures, focusing on the 

applicability of Shannon’s entropy and the approximate entropy within sports context (Section 2). This 

is further exploited in Section 3, wherein these measures are considered to study the motor control 

variability in three completely different modalities, namely the golf putting, the tennis serve and the 

football. The variability emerging from the athletes’ performance is considered as a measure to compare 

their performance under different practice conditions (intrapersonal analysis) and between different 

athletes (interpersonal analysis). The paper ends with conclusions and final remarks (Section 4). 

 

2. Entropy 

The human movement variability can be described as motor performance variations over multiple 

repetitions for the same task [5]. Despite similarities between repetitions, the multiple constraints 

inherent to the environment, the task and even the athlete’s body, lead to inevitable differences, thus 

resulting in a certain degree of variability [3]. From an evaluation perspective, the human movement 

oscillations can be evaluated, as any other time-series, by benefiting from entropy-based techniques [12], 

which allow to identify the variability in a spatio-temporal perspective. Despite the multiple entropy-

based techniques one may consider to measure sports variability, both Shannon’s entropy [18] and 

approximate entropy (ApEn) [24] have been the ones most widely used. Hence, let us briefly describe 

both methods. 

 

2.1. Shannon’s entropy 

The entropy measure proposed by Shannon was initially considered to quantify the expected value of 

the information contained in a message, which can be measured in units such as bits [18]. However, the 

applicability of Shannon’s entropy is wide; from the study of birds’ vocal repertories [19] to the heart 

rate variability [20]. Within sports context, some studies have benefitted from Shannon’s entropy to 

measure the athletes’ variability, mainly applying it to their trajectory [18]. In this specific situation, 

Shannon’s entropy is applied as in any other images processing problem, by considering the relevant 

information about the spatial variability of athletes. To apply Shannon’s entropy to a generic image, one 

should consider the histogram entry of intensity value 𝑖, ℎ𝑖, to first retrieve the probability mass function 

as [22]: 

 

𝑝𝑖=
ℎ𝑖

𝑁𝑐
, (1) 

 

wherein 𝑁𝑐 is the total number of cells (i.e., the spatial resolution of a field). Shannon’s entropy can then 

be calculated as [18], [23]: 
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𝐸 = − ∑ 𝑝𝑖 𝑙𝑜𝑔2𝑝𝑖𝑖 , (2) 

 

Considering a soccer field of 𝑁𝑐  cells, equation (2) returns the values of entropy defining the 

variability of a given athlete’s trajectory based on the time a he stands on a cell. High values represent a 

large variability, which may as well describe a given chaotic or even completely random trajectory 

spread all over the field. On the other hand, low values represent a small human movement variability, 

which may as well mean that the athlete presents a rather periodic or even completely steady trajectory 

(e.g., have an homogenous trajectory all over the field or being in the same position). 

Shannon’s entropy quantifies the information expected value associated to a discrete random variable 

[23]. As such, Shannon’s entropy can also be used as a measure of uncertainty, or unpredictability. For 

instance, for a uniform discrete distribution, i.e., when all the values of the distribution have the same 

probability, Shannon’s entropy reaches its maximum. The minimum value of Shannon’s entropy then 

corresponds to perfect predictability, while higher values of Shannon’s entropy are related to a lower 

degree of predictability [23]. As it considers the variability over time, the entropy can be seen as a more 

general measure of uncertainty when compared to the variance or the standard deviation [23]. Another 

interesting feature is that, whilst both entropy and variance reflect the degree of concentration for a 

particular distribution, they are rather different: while the variance measures the concentration around 

the mean, the entropy measures the diffuseness of the density irrespective of the location parameter.  

 

2.2. Approximate Entropy  

The approximate entropy (ApEn) was first  introduced by Pincus as a measure for characterizing 

the regularity in relatively short and potentially noisy data [24]. Mo r e  specifically, ApEn quantifies 

the degree of irregularity or randomness within a time-series (of length N) and has already been widely 

applied to (non-stationary) biological systems to dynamically monitor the system’s “health” [25]. The 

conceptual idea is rooted in the work of Grassberger and Procaccia [26] and makes use of the 

distances between sequences of successive observations. ApEn then analyses the time-series looking 

for similar epochs, in which more similar and more frequent epochs lead to lower values of ApEn [25]. 

From a qualitative point- of- view, given N points, ApEn is approximately equal to the negative 

logarithm of the conditional probability that when two sequences similar for m points remain similar 

within a tolerance r at the next point [25]. Smaller ApEn values indicate a greater chance that a set of 

data will be followed by similar data (regularity) [26], i.e., greater regularity. Contrariwise, larger ApEn 

values points toward a lower chance of repeatable data (irregularity), i.e., more disorder, randomness and 
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system complexity. In other words, a low/high ApEn value reflects a high/low degree of regularity. It is 

also noteworthy that ApEn detects changes in underlying episodic behavior not reflected in peak 

occurrences or amplitudes. 

The techniques for estimating the approximate entropy can be considered as a process represented by 

a time-series and related statistics [24]. Let us consider that the whole data of 𝑡 samples (i.e., seconds) 

is represented by a time-series as 𝑢(1), 𝑢(2), … , 𝑢(N), from measurements equally spread out in time 

[17]. These samples form a sequence of vectors 𝑥(1), 𝑥(2), … , 𝑥(𝑁 − 𝑚 + 1) ∈ ℝ1×𝑚, each one defined 

by the array 𝑥(𝑖) = [𝑢(𝑖) 𝑢(𝑖 + 1) ⋯ 𝑢(𝑖 + 𝑚 − 1)] ∈ ℝ1×𝑚 . Parameters 𝑁𝑡 , 𝑚, and 𝜀must be 

stationary for each calculation. The parameter 𝑁 represents the length of the time-series (i.e., number of 

data points of the whole series), 𝑚 denotes the length of sequences to be compared and 𝜀 is the tolerance 

for accepting matches. So, one can define [17]: 

 

𝐶𝑖
𝑚(𝜀) =

𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑥(𝑗)𝑠𝑢𝑐ℎ𝑡ℎ𝑎𝑡𝑑(𝑥(𝑖),𝑥(𝑗))≤𝜀

𝑁−𝑚+1
. (3) 

 

for 1 ≤ 𝑖 ≤ 𝑁 − 𝑚 + 1. Based on Takens’ work(11), one can defined the distance 𝑑(𝑥(𝑖), 𝑥(𝑗)) for 

vectors 𝑥(𝑖) and 𝑥(𝑗) as: 

 

𝑑(𝑥(𝑖), 𝑥(𝑗))  = 𝑚𝑎𝑥
𝑘=1,2,…,𝑚

|𝑢(𝑖 + 𝑘 − 1) − 𝑢(𝑗 + 𝑘 − 1)|. (4) 

 

From the 𝐶𝑖
𝑚(𝜀), it is possible to define (11): 

 

𝐶𝑖
𝑚(𝜀) = (𝑁𝑐 − 𝑚 + 1)−1 ∑ 𝐶𝑖

𝑚(𝜀)𝑁𝑐−𝑚+1
𝑖=1 , (5) 

 

and the correlation dimension as: 

 

𝜂𝑚 = 𝑙𝑖𝑚
𝜀→0 𝑁→∞

ln( 𝐶𝑚(𝜀))

ln 𝜀
, (6) 

 

for a sufficiently large 𝑚. The limit in [6] exists for many chaotic attractors and this procedure is 

frequently applied to experimental data. In fact, researchers seek a “scaling range” of 𝜀 values for which 

ln( 𝐶𝑚(𝜀))

ln 𝜀
 is nearly constant for large 𝑚, and they infer that this ratio is the correlation dimension. In some 

studies, it was concluded that this procedure establishes deterministic chaos [17]. 
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Let us define the following relation: 

 

𝛷𝑚(𝜀) = (𝑁𝑐 − 𝑚 + 1)−1 ∑ 𝑙𝑛 𝐶𝑖
𝑚 (𝜀)𝑁𝑐−𝑚+1

𝑖=1 . (7) 

 

One can define the approximate entropy as: 

 

𝐴𝑝𝐸𝑛 = 𝛷𝑚(𝜀) − 𝛷𝑚+1(𝜀) (8) 

 

A preliminary conclusion suggests that choice of𝜀 of the standard deviation of the data ranging from 0.1 

to 0.2 would produce reasonable statistical validity of 𝐴𝑝𝐸𝑛 [17]. 

For that range of values, it is possible to classify a given time-series using the approximate entropy 

𝐴𝑝𝐸𝑛  as [20]: i) periodic (~0); ii) chaotic (0.1 until 1.4); and iii) random (˃ 1.5).In summary, the 

presence of repetitive patterns of fluctuation in a time-series (periodic time-series) renders it more 

predictable than a time-series in which such patterns are absent (chaotic or random time-series). 

3. Case Studies 

This section explores the applicability of the entropy measures presented in the previous section by 

considering three case studies: i) the golf putting; ii) the tennis serve; and iii) the football. 

3.1. Golf 

To describe the golf putting variability, it has been established that nonlinear techniques, such as the 

approximate entropy, should allow unraveling the structure of a mathematical representation of this 

movement. Most traditional research around the putting has been trying to quantify the motor 

performance of athletes through the mean, standard deviation and coefficient of variation, which take 

into consideration the individual characteristics of athletes and are mostly based upon statistical effects 

to characterize the learning and training of this gesture (see [8, 9 and 10]). However, as a human 

movement, even as “simple” as the golf putting, is seen as a nonlinear system capable of producing 

solutions to solve motor problems, it requires special attention and in-depth research. In fact, each golfer 

has different morphological and functional characteristics that may represent a determined performance 

profile, typically known as “signature” or “digital fingerprint”.  

The way athletes adapt to the variability that emerges from the putting execution and how they self-

organize their performance toward the task constraints was then investigated. The sample consisted of 

10 adult male golfers (33.80±11.89 years), right-handed and experts (10.82±5.40 handicap), including 

the European champion of pitch and putting (season 2012/2013). The athletes executed the task on a 

rectangular green carpet, replicating a fast putting surface able to provide a ball speed up to 10m/s 

(Figure 1a). 
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2m                          3m                           4m 

 

The procedure comprised on three studies. In the first study (St1), golfers had to execute the putting 

at 1 (1m), 2 (2m), 3 (3m) and 4 (4m) meters away from the hole, without any additional constraint. In 

the second study (St2), a slope was placed between the hole and the 2 meters distance. In that study, 

golfers had to execute the putting at 2 (2m), 3 (3m) and 4 (4m) meters away from the hole. Finally, in 

the third study (St3) an additional constraint was added by obliging golfers to execute the putting on the 

left and right side of the carpet at 25º in relation to the hole (see Angle One (A1) and Angle Two (A2) in 

Figure 1a). 

 

 

Figure 1.a) Top and side views of the experimental apparatus; b) captured frame with the 

experimental setup prepared for the second study (St2) 2 meters (2m) away from the hole 

(adapted from [8] and [9]). 

The trajectory of the putter was acquired using auto tracking methodologies comprising on detection 

and estimation technique as presented in our previous work [8]. To that end, a camera at 210Hz was 

placed in front of golfers so as acquire the most relevant process variables, namely the horizontal 

trajectory of the putter (Figure 1b). This pre-processing step would then return the trajectory of the each 

putting trial. Nevertheless, in order to evaluate the putting over the whole procedure, one needs to 

a) 

b) 
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generate a single time-series that may represent the overall putting data over time in all the trials under 

that same condition. In other words, after obtaining the data of each putting one wishes to evaluate as a 

hole, it is necessary to concatenate the necessary data. For instance, Figure 2 depicts 30 trials of a single 

golfer under a specific practice condition concatenated into a single time-series. Generally speaking, the 

function from Figure 2 represents the time series characteristic of a golfer’s movement in a one practice 

condition. In the case represented in Figure 2, one can confirm that, although the gesture is mostly 

periodic, the golfer still presents some variability at the level of putting execution (the amplitude and 

duration of the movement slightly diverges throughout the trials). 

 

 

 

Figure 2.  Example of the concatenation of 30 trials from a given golfer and practice condition. 

 

Having a time-series, one can now directly apply the approximate entropy (ApEn) (section 2.2) to 

analyze the variability of golf putting over all practice conditions [9]. Table 1 depicts the approximate 

entropy for the motor execution of the putting of each golfer in the three studies. Highest ApEn values 

are highlighted to represent the practice conditions within each study that led to a higher human 

variability.  

The results indicate that the golf putting performance can be described as a nonlinear, stable and 

regular system in which each golfer discovers active solutions to overcome the constraints of the task 

[9], [21], [40]. Interestingly, the ApEn values found throughout the three studies show that the minimum 

values are generally obtained at longer distances (4m), increasing almost linearly as the golfer gets near 

the hole. This is highly unexpected as it means that golfers depict a larger variability when near the hole. 

Not that unexpected was the result found for the third study, in which the maximum value of ApEn may 

be observed for the Angle Two (A2), when golfers had to apply a curvilinear trajectory in order for the 

ball to overcome the ramp. Note that this situation is considerably more complex than the alternatives, 

including Angle One (A1), as golfers have their vision partially constrained (see Figure 1a), thus being 

under a large amount of ‘noise’ and variability. In terms of the athletes, Players 1 and 9 proved to be the 

most consistent (presenting the lowest ApEn), whereas Players 3, 6 and 8 presented the highest levels of 

entropy (Figure 3). 
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Table 1. Approximate entropy for motor execution of putting of each golfer in three studies. 

 

 PC P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 Avg per St 

S
t1

 

1m 0.042 0.056 0.071 0.055 0.056 0.068 0.057 0.073 0.047 0.057 0.058 

2m 0.042 0.056 0.068 0.053 0.052 0.071 0.048 0.065 0.044 0.051 0.055 

3m 0.046 0.053 0.068 0.043 0.043 0.055 0.047 0.061 0.041 0.046 0.050 

4m 0.044 0.045 0.060 0.037 0.041 0.052 0.056 0.056 0.043 0.049 0.048 

S
t2

 

2m 0.040 0.053 0.062 0.062 0.040 0.058 0.051 0.069 0.043 0.065 0.0543 

3m 0.033 0.048 0.064 0.054 0.039 0.066 0.064 0.058 0.044 0.048 0.0518 

4m 0.036 0.041 0.064 0.044 0.040 0.051 0.049 0.054 0.036 0.046 0.0461 

S
t 

3
 A1 0.040 0.055 0.056 0.051 0.042 0.059 0.053 0.075 0.054 0.055 0.054 

A2 0.050 0.066 0.054 0.061 0.065 0.083 0.070 0.076 0.053 0.056 0.063 

P= Player A= Angle Avg= Average  St= Study PC= Practice condition 

 

Figure 3 complements the aforementioned table by presenting the average entropy for each golfer 

over all practice conditions. 

 

 
 

Figure 3: Average approximate entropy for each golfer. 

 

Out of curiosity, when calculating the overall average ApEn, the putting performance of expert golfers 

yields a value of 0.053. This is a very stable, regular and periodic value [9]. As one will observe, the 

next case study does not share the same regularity. 

3.2. Tennis 

In this section, let us now increase the complexity of the human motor execution from a pendulum to 

a ballistic-like motion. For the tennis serve case, a non-traditional analysis of motor variability may help 

revealing or uncovering its complex structure, which is undetectable using conventional linear measures, 

such as amplitude or standard deviation [28],  [29]. In this case study, we aimed at studying the intra and 
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inter-individual variability of motor performance in the first serve using the approximate entropy, while 

manipulating the lateral wind constraint by benefiting from an induced aerodynamic flow (IAF) device 

which was adapted from an industrial helical fan METEC-HCT-45-4T (Figure 4). Please, refer to [30] 

for a more detailed description of the setup. 

The sample consisted of 12 adult male tennis players, right-handed, 25.17±3.93 years old. The 

anthropometric characteristics of this group were as follows: height 177±6.00 cm, wingspan of 181±5.00 

cm and body mass of 72.29±4.17 Kg. All athletes had been playing tennis for 16.25±5.56 years, from 

which 13.67±4.29 years were at the national competition level. The indoor tennis court had the official 

dimensions for the singles tennis game, with 2377 cm long and 823 cm wide. 

The movement under study was the flat first serve from behind the base line of the tennis court, on 

the right-hand side, and 80 cm away from the center mark. All the participants were asked to serve at a 

maximum speed and aiming at the point of intersection between the center line and the service line (i.e., 
“T-point”). Also, they were all asked to perform 20 tennis serves, without instructional or wind 

constraints, called IAF0 (a control condition). Afterwards, they were then asked to perform four sets of 

20 serves under different practice conditions: (1) minimum IAF speed of 2.4 m.s-1 (called IAF1); (2) 

medium IAF speed of 4.3 m.s-1 (called IAF2), 3); (3) maximum IAF speed of 5.8 m.s-1 (called IAF3) 

and; (4) random IAF speed with random sequences at the three IAF speeds (called IAFr). All these then 

accounts for 100 serves for each athlete. 

 

 

Figure 4. Experimental set up. A - Device IAF. B - Accuracy registration device. C - Device for 

recording the velocity of the serve. D - Device for analyzing the impact point in the serve. Dashed arrow 

indicates a possible direction of tennis serve: adapted from [30]. 
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The recording of the racket motion was obtained from two cameras operating at 210 Hz (cameras 0 

and 1 from Figure 4). The cameras were synchronized using a common light-emitting diode (LED) as 

a visual trigger [30]. A 3D analysis of the collected images was carried out. For a more detailed 

description of the 3D analysis, please refer to [31]. 

 

Table 2. Approximate entropy for motor execution of tennis serve of each player in five practical 

conditions, in three components x, y e z. 

Participants 
Practical Conditions 

IAF0 IAF1 IAF2 IAF3 IAFr 

1 

ApEn_x 0.0347 0.0309 0.0307 0.0307 0.0324 

ApEn_y 0.0534 0.0506 0.0562 0.0045 0.0525 

ApEn_z 0.1070 0.0926 0.0892 0.0040 0.0954 

2 

ApEn_x 0.0171 0.0188 0.0272 0.0315 0.0363 

ApEn_y 0.0374 0.0375 0.0414 0.0413 0.0386 

ApEn_z 0.0209 0.0196 0.0202 0.0204 0.0197 

3 

ApEn_x 0.0213 0.0259 0.0279 0.0252 0.0238 

ApEn_y 0.0222 0.0235 0.0250 0.0248 0.0227 

ApEn_z 0.0330 0.0321 0.0341 0.0305 0.0287 

4 

ApEn_x 0.0171 0.0125 0.0326 0.0350 0.0347 

ApEn_y 0.0007 0.0411 0.0347 0.0410 0.0320 

ApEn_z 0.0209 0.0374 0.0223 0.0310 0.0212 

5 

ApEn_x 0.0316 0.0348 0.0344 0.0331 0.0392 

ApEn_y 0.0351 0.0330 0.0374 0.0383 0.0447 

ApEn_z 0.0374 0.0397 0.0432 0.0412 0.0353 

6 

ApEn_x 0.0559 0.0265 0.0261 0.0276 0.0310 

ApEn_y 0.0278 0.0410 0.0425 0.0355 0.0223 

ApEn_z 0.0230 0.0354 0.0233 0.0377 0.0282 

7 

ApEn_x 0.0289 0.0311 0.0322 0.0278 0.0301 

ApEn_y 0.0298 0.0245 0.0236 0.0280 0.0259 

ApEn_z 0.0228 0.0222 0.0219 0.0214 0.0215 

8 

ApEn_x 0.0171 0.0267 0.0436 0.0290 0.0313 

ApEn_y 0.0366 0.0312 0.0467 0.0334 0.0340 

ApEn_z 0.0308 0.0318 0.0290 0.0346 0.0353 

9 

ApEn_x 0.0354 0.0386 0.0345 0.0386 0.0356 

ApEn_y 0.0195 0.0230 0.0218 0.0242 0.0220 

ApEn_z 0.0218 0.0255 0.0223 0.0249 0.0261 

10 

ApEn_x 0.0272 0.0331 0.0329 0.0334 0.0271 

ApEn_y 0.0279 0.0299 0.0310 0.0334 0.0336 

ApEn_z 0.0300 0.0251 0.0293 0.0241 0.0201 

11 

ApEn_x 0.0168 0.0315 0.0271 0.0293 0.0262 

ApEn_y 0.0409 0.0523 0.0520 0.0477 0.0490 

ApEn_z 0.0225 0.0287 0.0309 0.0351 0.0335 

12 

ApEn_x 0.0329 0.0402 0.0372 0.0454 0.0412 

ApEn_y 0.0245 0.0236 0.0240 0.0231 0.0256 

ApEn_z 0.0263 0.0255 0.0265 0.0243 0.0229 

Total 

ApEn_x 
Avg per St 0.0303 0.0307 0.0322 0.0307 0.0302 

Total 

ApEn_y 
Avg per St 0.0292 0.0343 0.0343 0.0314 0.0337 

Total 

ApEn_z 
Avg per St 0.0335 0.0346 0.0344 0.0271 0.0322 
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The approximate entropy (ApEn) was calculated based on the position of the racket during the 

execution of the service, considering the three components x, y and z-axis. Table 2 depicts the 

approximate entropy for the motor execution of the tennis serve of each player in the five practice 

conditions. Highest ApEn values are highlighted to represent the practice conditions that led to a higher 

human variability in each axis. 

The ApEn_x in the lateral component (x-axis) has shown that all participants present values inferior 

to 0.0560. In general, IAF2 was the condition that yielded higher variability in the x-axis. Regarding the 

depth component (y-axis), ApEn_y values were similarly low (less than 0.0562). Again, IAF2, now 

together with IAF1, were the conditions that yielded higher variability, this time in the y-axis. In the 

vertical component, ApEn_z values were even lower, below 0.0432. Player 1 presented an overall larger 

variability in most conditions but, in general, the variability in the vertical component was rather smaller 

than expected. Still, IAF1 was the condition that yielded higher variability in the z-axis. 

This nonlinear analysis carried out for the racquet position along the three axes resulted in an 

approximate entropy close to 0 (inferior to 0.1).To some extent, this characterizes the serve like a 

periodic system with high regularity and low variability, regardless on the wind conditions [15]. 

Although the study of Menayo [32] reached the same conclusions using different methods for players of 

intermediate level under different constraints, we were expecting to observe a more chaotic behavior 

from a ballistic movement. It is also noted that, even though it may be neglected in some occasions, there 

has been a larger number of players with a slight tendency to increase their variability due to wind 

constraints.  

3.3. Soccer 

As one may observe from the previous case studies, the approximate entropy can be applied to study 

athletes’ variability in different contexts. In this section, we consider both entropy-based measures, 

namely Shannon’s entropy and the approximate entropy to analyze the variability inherent to soccer 

players’ trajectories. 

In a first instance, let us consider the applicability of Shannon’s entropy. According to section 2.1, to 

do so one should first divide the soccer field into cells. To do so, one can segment the field into 1𝑚2 

resolution. The time a given player stands in each 1 𝑚2 cell will result into a specific heat map (i.e., 
histograms) representing the overall trajectory travelled by him inside the soccer field [33], [34]. For the 

sake of simplicity, the player’s position has been discretized at each second, in which a given cell gets 

the value of 1 to identify the player presence, or 0 otherwise [35]. This spatio-temporal approach allows 

to identify the spatial variability of a soccer player trajectory over the whole match. Figure 5 presents a 

specific case of how the variability can be understood by considering different tactical positions. 
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Figure 5. a) Tactical line-up of team; b) Goalkeeper’s heat map (Player 1); c) Midfielder’s heat map 

(Player 8). 

 

As one can observe in Figure 5b,c, the soccer players’ trajectories vary accordingly to their tactical 

position, being defined by the strategic plan and by the game dynamics [36]. It is noteworthy that Figure 

5b,c is a typical representation of an image with three dimensions and, henceforth, one can apply 

Shannon’s entropy as it would be the case of any other histogram. In this work, we considered an entire 

soccer match and computed Shannon’s entropy for all soccer players [17]. Figure 6 depicts the results. 

 

 

 

Figure 6. Shannon’s entropy of all players from one of the teams during an entire soccer match. 

 

In this case study, it was found that midfielders present a larger Shannon’s entropy (player 7: 𝐸 =

2.470; player 8: 𝐸 = 2.449; player 6: 𝐸 = 2.372). As expected, the lowest value was found for the 

goalkeeper (𝐸 = 0.804). These results reveal that midfielders cover a larger area and spend less time in 

a specific region of the field. This can be explained by their tactical role, mainly because they have an 

active participation linking both defensive and offensive sectors [37].  
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Nevertheless, Shannon’s entropy considers the overall of players without making an allowance for 

the sequence generating such a trajectory, i.e., the sequence of cells a given player was in. Although 

Shannon’s entropy can be used for coaches and their staff to control the physical demands of a match 

and to assess players’ performance over the time [38], this kind of analysis completely excludes the 

temporal factor. However, it is quite important to understand how players react during the match in order 

to identify possible motion patterns. This can be an invaluable information to optimize daily training 

sessions by exploiting the cycles of low and high intensities emerging during the match.  

To better illustrate the previous argument, let us show an example of the distance covered by a player 

over time (Figure 7). 

 

 

Figure 7. Distance covered by a player during an entire soccer match. 

 

The example depicted in Figure 7 shows that players do not cover the same distance at each second. 

Hence, the variability inherent to a given player’s trajectory is not constant and must be managed by 

himself and by the coach, in order to anticipate and avoid the human fatigue that may affect his 

performance [39]. As previously stated, the variability depends from the tactical role and even from the 

strategic plan defined by the coach to manage the physiological responses of players.  

For this case, and following a similar approach from the one adopted for the previous case studies, 

the approximate entropy was considered [17]. Figure 8 depicts the obtained results. 
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Figure 8. Approximate entropy of all players from one of the teams during an entire soccer match. 

 

As opposed to Shannon’s entropy, the approximate entropy did not showed any major differences 

between players’ variability. Yet, the largest values were found for two of the midfielders (player 7: 

0.547; and player 8: 0.562) and one forward player (player 11: 0.546). These values, similarly as 

observed before, are inherent to players presenting a larger mobility during the match. Once again, the 

distance travelled seems to be directly related with the variability. 

4. Conclusions 

From the case studies considered in this paper, one can concluded that nonlinear techniques are 

extremely useful to analyze the human movement within sports context. In general, entropy-based 

measures can be considered as one of the main methods to study the human variability, thus making up 

for the limitations inherent to linear techniques typically used to quantify the motor performance, such 

as the standard deviation, the inter-quartile range, and many other classical alternatives. However, it is 

noteworthy that we do not aim at underestimating the role that linear techniques have in sports sciences, 

but rather propose alternative nonlinear methods that may deepen our understanding around the human 

movement science.  

In this paper, both Shannon’s entropy and approximate entropy are considered to further understand 

human variability in the context of the golf putting (pendulum-like movement), tennis serve (ballistic-

like movement) and football players’ trajectories (chaotic/random movement). The insights provided in 

this work bring important practical implications to the area of sports training, since these suggest that 

the athlete can stabilize his performance by exploiting different configurations of information-movement 

within different levels of variability, regularity and complexity. This reveals the complexity inherent in 

normal variability, indicating motor control features that are imperative for athletes and coaches to 

measure and, more importantly, to understand. Moreover, the application of principles based on 

nonlinear dynamics can provide a novel perspective on how training in general should be organized. 

At last, it should be noted that athletes’ characteristics (morphological and functional), their level of 

performance and the complexity inherent in motor execution play an important role in the outcome 

0.515 0.504
0.531

0.511 0.51
0.543 0.547 0.562

0.512 0.507
0.546

0

0.1

0.2

0.3

0.4

0.5

0.6

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11

Ap
En

players



 17 

 

 

provided by the entropy measures. Consequently, it is the authors’ belief that the solution to the problem 

of individuality should not be limited to the use of ideal or standardized techniques, but yet it shall 

contemplate a wide variety of nonlinear strategies that can be implemented and adapted to the specificity 

of each athlete. 
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