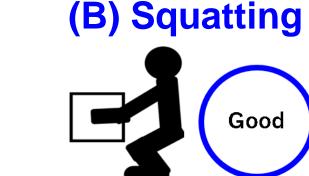


The 12th International Electronic Conference on Sensors and Applications

12-14 November 2025 | Online

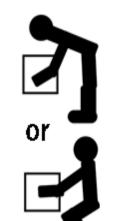
Prototype of Lifting Posture Monitoring System for Preventing Low Back Pain


Kodai Kitagawa^{1*}, Rintaro Isaka¹, Arthur Ducoulombier²

¹National Institute of Technology, Hachinohe College, Japan ²BUT Génie Electrique et Informatique Industrielle, Université de Lille, France

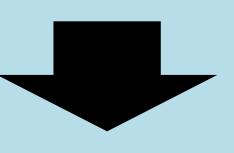
INTRODUCTION & AIM

Lifting Postures [1]


(A) Stooping

Squatting is suitable for preventing lower back pain in lifting[1].

Observation in Occupational Health


Human Observation

Limitations

- →frequency
- →not anyplace
 →repeatability
- →fatigue in observer

Monitoring systems are required.

Our previous study [2] proposed the automatic posture recognition method by using 2D images and machine learning.

The aim was to develop a prototype lifting posture monitoring system using common camera.

DEVELOPMENT

Proposed System

Proposed system recognize three postures.

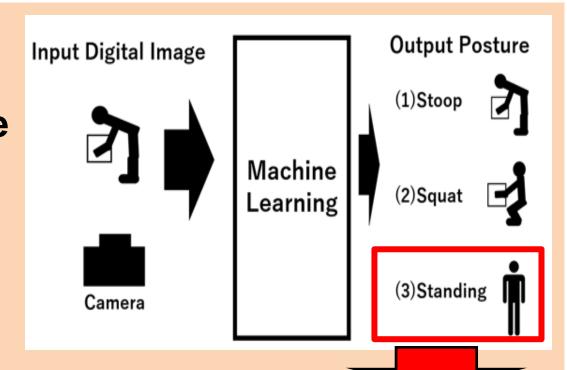
- Squatting
- Stooping
- Standing (not lifting)

Prototype System

Olymplementation

→HTML and JavaScript

2Machine Learning


- →MobileNetV2 [3]
- **→**Teachable Machine [4]

3Input

→Images or movie from camera of laptop PC

4Output

→Probability of each posture (results of recognition)

Standing posture is detected for removing unrelated images.

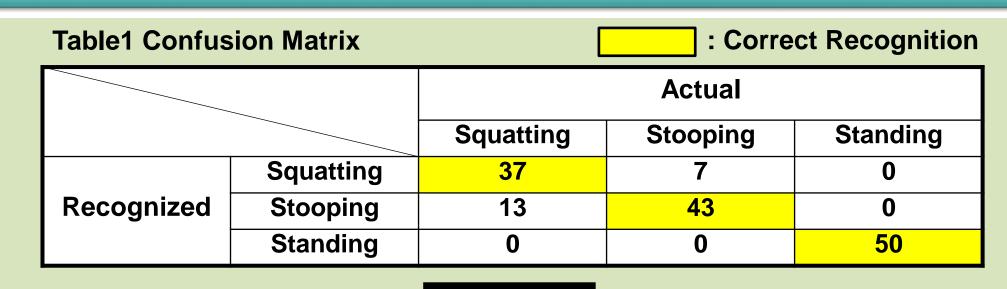
Conditions of Machine Learning

Epoch	200
Batch Size	16
Learning Rate	0.0001

EVALUATION

We evaluated whether machine learning could recognize three postures.

Posture Images


→150 images (50 images for each posture)

Training and Testing

⇒5-folds Cross Validation

RESULTS & DISCUSSION

Accuracy of Recognition: 0.867

- Accuracy was comparable to human observations [5].
- Machine learning of the prototype system can extract and recognize lifting postures.

CONCLUSION

- This study developed a prototype lifting posture monitoring system using common camera.
- The results indicate that the prototype system can extract and lifting postures to prevent low back pain.

Acknowledgments: This work was supported by JSPS KAKENHI (Grant Number: 23K17262).

Conflict of Interest: The authors declare no conflict of interest.

References

- [1] J.H. VanDieën, et al., Clinical biomechanics, Vol.14, No.10, pp.685–696, 1999.
- [2] K. Kitagawa, et al., International Journal of Applied Biomedical Engineering, Vol.18, No.1, pp.1-7, 2025.
- [3] A.G. Howard, et al., "Mobilenets: Efficient convolutional neural networks for mobile vision applications", arXiv preprint arXiv:1704.04861, 2017.
- [4] Google, "Teachable Machine." Accessed: August 2, 2025. [Online]. Available: https://teachablemachine.withgoogle.com/
- [5] C. Lins, et al., "OWAS inter-rater reliability", Applied Ergo-nomics, Vol. 93, p.103357, 2021.