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Abstract: This paper estimates the entropy of the half-logistic distribution with the scale
parameter based on Type-II censored samples. The maximum likelihood estimator and
the approximate confidence interval are derived for entropy. For Bayesian inferences, a
hierarchical Bayesian estimation method is developed using the hierarchical structure of
the gamma prior distribution which induces a noninformative prior. The random-walk
Metropolis algorithm is employed to generate Markov chain Monte Carlo samples from the
posterior distribution of entropy. The proposed estimation methods are compared through
Monte Carlo simulations for various Type-II censoring schemes. Finally, real data are
analyzed for illustration purposes.
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1. Introduction

Shannon [1] proposed information theory to quantify information loss and introduces statistical
entropy. Baratpour et al. [2] provided the entropy of a continuous probability distribution with upper
record values and several bounds for this entropy by using the hazard rate function. Abo-Eleneen [3]
suggested an efficient computation method for entropy in progressively Type-II censored samples. Kang
et al. [4] derived estimators of the entropy of a double-exponential distribution based on multiply Type-II
censored samples by using maximum likelihood estimators (MLEs) and approximate MLEs (AMLEs).
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Seo and Kang [5] developed estimation methods for entropy by using estimators of the shape parameter
in the generalized half-logistic distribution based on Type-II censored samples.

This paper estimates the entropy of the half-logistic distribution (HLD) by using the maximum
likelihood and hierarchical Bayesian methods when a sample is available from the Type-II censoring
scheme. The HLD is obtained by folding the logistic distribution, which is widely employed in many
fields such as biological sciences, engineering, and industrial. Balakrishnan [6] demonstrated that the
HLD is applicable to life-testing studies. The cumulative distribution function (cdf) and probability
density function (pdf) of the random variable X with this distribution are given by

F (x) =
1− e−x/σ

1 + e−x/σ

and

f(x) =
2e−x/σ

σ (1 + e−x/σ)
2 , x > 0, σ > 0,

where σ is the scale parameter.
The rest of this paper is organized as follows: Section 2 develops the maximum likelihood estimation

method and provides a hierarchical Bayesian method to estimate the entropy of the HLD based on Type-II
censored samples. Section 3 examines the validity of the proposed estimation methods through Monte
Carlo simulations and real data, and Section 4 concludes.

2. Entropy Estimation

Let X1:n, . . . , Xn:n be the order statistics of random samples X1, . . . , Xn from a continuous
distribution with pdf f(x). In the conventional Type-II censoring scheme, r is assumed to be known
in advance, and the experiment is terminated as soon as the r-th item fails (r ≤ n). Then the entropy of
a continuous probability distribution based on Type-II censored samples is defined as

H(f) = −
∫ ∞
−∞
· · ·
∫ x2:n

−∞
f1,...,r:n(x1:n, . . . , xr:n) log(f1,...,r:n(x1:n, . . . , xr:n))dx1:n · · · dxr:n, (1)

where f1,...,r:n(x1:n, . . . , xr:n) is the joint pdf of x1:n, . . . , xr:n. Park [7] provided a single-integral
representation of entropy (1) in terms of the hazard function, h(x) = f(x)/(1− F (x)), as

H(f) =
r∑
i=1

[
1− log (n− i+ 1)−

∫ ∞
−∞

fi:n(x) log h(x)dx

]
,

where fi:n(x) is the pdf of the i-th order statistic Xi:n.

Theorem 1. Let X1:n, · · · , Xr:n be a Type-II censored sample from the HLD. Then, the entropy of the
HLD based on this sample is

H(f) ≡ H = c+ r log σ, (2)

where

c =
r∑
i=1

[
1− log (n− i+ 1) +

n!

(n− i)!

∞∑
j=1

2−j(n− i+ j)!

j(n+ j)!

]
.
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Note that the entropy (2) is an increasing function of the scale parameter σ for a fixed value of r and
that this entropy become negative for σ < e−c/r.

Proof. Let u = 1− F (x). Then∫ ∞
0

fi:n(x) log h(x)dx =
n!

(i− 1)!(n− i)!

∫ 1

0

un−i(1− u)i−1 log

[
1

σ

(
1− 1

2
u

)]
du

= − log σ − n!

(i− 1)!(n− i)!

∞∑
j=1

2−j

j

∫ 1

0

un−i+j(1− u)i−1du

= − log σ − n!

(n− i)!

∞∑
j=1

2−j(n− i+ j)!

j(n+ j)!

by using

log (1− z) = −
∞∑
j=1

zj

j
for |z| < 1.

This completes the proof.

2.1. Maximum Likelihood Estimation

This subsection derives the MLE of entropyH and the corresponding approximate confidence interval
by using useful properties of the MLE.

The likelihood function based on the Type-II censored sample in Theorem 1 is given by

L(σ) ∝ [1− F (xr:n)]n−r
r∏
i=1

f(xi:n)

=

(
1

σ

)r (
2e−xr:n/σ

1 + e−xr:n/σ

)n−r r∏
i=1

2e−xi:n/σ

(1 + e−xi:n/σ)
2 , (3)

and the MLE σ̂ can be found by maximizing the following log-likelihood function for σ:

logL(σ) ∝ −r log σ − (n− r)
[xr:n
σ

+ log
(
1 + e−xr:n/σ

)]
−

r∑
i=1

xi:n
σ
− 2

r∑
i=1

log
(
1 + e−xi:n/σ

)
.

Then, by the invariance property of the MLE, the MLE of H is given by

Ĥ = c+ r log σ̂. (4)

and its variance can be estimated as

Var
(
Ĥ
)

= r2Var (log σ̂)

≈
( r
σ̂

)2
Var (σ̂)

by using the delta method. Here Var (σ̂) is approximated by the inverse of the observed Fisher
information for σ as

V̂ar (σ̂) =

[
− ∂2

∂σ2
logL(σ)

∣∣∣∣
σ=σ̂

]−1
,
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where

∂2

∂σ2
logL(σ) =

1

σ2

[
r − 2(n− r)xr:n

σ
− (n− r) e−xr:n/σ

1 + e−xr:n/σ
xr:n
σ

(
1

1 + e−xr:n/σ
xr:n
σ
− 2

)
−2

r∑
i=1

xi:n
σ
−

r∑
i=1

e−xi:n/σ

1 + e−xi:n/σ
xi:n
σ

(
1

1 + e−xi:n/σ
xi:n
σ
− 2

)]
.

Therefore, by the asymptotic normality of the MLE, the approximate 100(1 − ν)% confidence interval
for H based on MLE Ĥ is given by(

Ĥ − zν/2
√

Var
(
Ĥ
)
, Ĥ + zν/2

√
Var

(
Ĥ
))

,

where zν/2 denotes the upper ν/2 point of the standard normal distribution.

2.2. Bayesian Estimation

In the absence of sources of informative or past data, Bayesian methods depend on the objective
or noninformative priors. This subsection derives Jeffreys prior that is proportional to the square root
of Fisher information, and considers a hierarchical Bayesian approach method for obtaining the Bayes
estimators of σ and H .

Let θ = 1/σ. Then the likelihood function (3) is written as

L(θ) ∝ θr
(

2e−θxr:n

1 + e−θxr:n

)n−r r∏
i=1

2e−θxi:n

(1 + e−θxi:n)2
. (5)

From the likelihood function (5), the corresponding negative of the second derivative is given by

− ∂2

∂θ2
logL(θ) =

r

θ2
+ (n− r) e−θxr:n

(1 + e−θxr:n)2
x2r:n + 2

r∑
i=1

e−θxi:n

(1 + e−θxi:n)2
x2i:n. (6)

To obtain the expectation of (6), let u = 1− F (x). Then

E

[
X2e−θX

(1 + e−θX)2

]
=

∫ ∞
0

x2e−θx

(1 + e−θx)2
fi:n(x)dx

=
1

8θ2
Γ(n+ 1)

Γ(i)Γ(n− i+ 1)

∫ 1

0

un−i+2(1− u)i−1(2− u)

[
log

(
2− u
u

)]2
du

∝ 1

θ2
.

Therefore, the Jeffreys prior for θ is

π(θ) =

√
E

[
− ∂2

∂θ2
logL(θ)

]
∝ 1

θ
.

Hierarchical modeling is known to improve the robustness of resulting Bayes estimators while still
incorporating prior information. Kim et al. [8] considered the inverse gamma distribution as a prior



5

distribution for the scale parameter σ of the HLD when a sample is available from the progressively
Type-II censoring scheme, which is a generalization of the conventional Type-II censoring scheme,
and assumed that parameters of the inverse gamma distribution are known. Here the parameters are
considered to be random variables, and then a hierarchical Bayesian estimation method is developed.

Because the prior of σ is the inverse gamma distribution, that of θ is the gamma distribution with the
pdf

π(θ|α, β) =
βα

Γ(α)
θα−1e−βθ, α, β > 0. (7)

In the gamma prior (7), Sun and Berger [9] derived the reference prior for α and β as

π(α, β) =
1

β

√
ψ′(α)− 1

α
, α, β > 0, (8)

where ψ′(·) the trigamma function.
According to Han [10], the hyperparameters α and β should be chosen such that the gamma prior (7)

is a decreasing function of θ. For 0 < α ≤ 1 and β > 0,

d

dθ
π(θ|α, β) = [(α− 1)− βθ] βα

Γ(α)
θα−2e−βθ < 0,

and then the gamma prior (7) is a decreasing function of θ for 0 < α ≤ 1 and β > 0. Therefore, the
prior (8) is specified with this supports. Then the hierarchical prior for θ is obtained as

π(θ) =

∫ 1

0

∫ ∞
0

π(θ|α, β)π(α, β)dβdα

=
1

θ

∫ 1

0

√
ψ′(α)− 1

α
dα

∝ 1

θ
, (9)

which is improper.
Note that the hierarchical prior (9) has the same form as Jeffrey’s prior (see the Appendix). Therefore,

the hierarchical prior (9) is invariant under reparametrization. Under this prior, the posterior density
function of θ is given by

π(θ|x) =
L(θ)π(θ)∫

θ
L(θ) π(θ)dθ

∝ g1(θ)θ
r−1 exp

[
−θ

(
(n− r)xr:n +

r∑
i=1

xi:n

)]
, (10)

where

g1(θ) =

(
1

1 + e−θxr:n

)n−r r∏
i=1

(
1

1 + e−θxi:n

)2

.

Here, because 0 < g1(θ) ≤ 1, the following inequality is established:

π(θ|x) ≤ θr−1 exp

[
−θ

(
(n− r)xr:n +

r∑
i=1

xi:n

)]
,
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which is proportional to the pdf of the gamma distribution with parameters r and (n−r)xr:n+
∑r

i=1 xi:n.
Therfore, the posterior density function (10) is proper even if the hierarchical prior (9) is improper.

Consider entropyH as a parameter itself. Then, with θ = e−(H−c)/r substituted into (10), the posterior
density function of H is obtained as

π(H|x) ∝g2(H) exp

[
−H −

(
(n− r)xr:n +

r∑
i=1

xi:n

)
exp

(
−H − c

r

)]
, (11)

where

g2(H) =

[
1

1 + exp
(
−xr:n exp

(
−H−c

r

))]n−r r∏
i=1

[
1

1 + exp
(
−xi:n exp

(
−H−c

r

))]2 .
Under the squared error loss function (SELF), Bayes estimators of θ and H are obtained by evaluating
the following integrals:

θ̂B =

∫
θ

θπ(θ|x)dθ (12)

and

ĤB =

∫
H

Hπ(H|x)dH. (13)

However, because they do not take a closed form, the Metropolis-Hastings and random-walk Metropolis
algorithms (see [11,12]) are employed to generate Markov chain Monte Carlo (MCMC) samples
θi(i = 1, . . . , N) and Hi(i = 1, . . . , N) from posterior density functions (10) and (11), respectively. In
the Metropolis-Hastings algorithm, the gamma distribution with parameters r and (n−r)xr:n+

∑r
i=1 xi:n

is chosen as the proposal distribution. In the random-walk Metropolis algorithm, the normal distribution
with parameters H and γVar

(
Ĥ
)

is chosen as the proposal distribution. Here γ is a parameter
for obtaining the desired acceptance rate, and Roberts and Rosenthal [13] showed that the optimal
acceptance rate is about 0.44 for one parameter. For faster convergence, the MLEs θ̂ and Ĥ are used
as starting values for repeat.

From the generated MCMC samples, Bayes estimators (12) and (13) are respectively obtained as

θ̂B =
1

N −M

N∑
i=M+1

θi,

and

ĤB =
1

N −M

N∑
i=M+1

Hi,

respectively, where M is the number of burn-in samples. Here since θ = 1/σ, the Bayes estimator of σ
is obtained as

σ̂B =
1

θ̂B
,

Chen and Shao [14] provided a simple method for constructing a 100(1 − ν)% highest probability
density (HPD) credible interval based on MCMC samples. Let H(i) be the i-th smallest of Hi and denote
Ri =

(
H(i), H(i+[(N−M)×(1−ν)])

)
for i = M + 1, . . . , (N −M) − [(N −M)× (1− ν)]. Then Ri with

the smallest width among all R′is is chosen as the 100(1− ν)% HPD credible interval for H .
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3. Application

This section assesses the performance of the proposed estimation methods and provides an example
to illustrate the proposed method.

3.1. Simulation Study

Table 1 reports the results for the performance of the scale parameter σ in terms of the relative
estimated risk (RER). The RER is simulated through Monte Carlo simulations. First, under various
Type-II censoring schemes, samples are generated from the standard HLD, and then the MLE σ̂ and the
Bayes estimator σ̂B are computed for each scheme. Because the estimated risk is the same as the risk
function obtained from the SELF, the estimated risk for each estimator is computed by repeating this
process 1, 000 times as

ER
(
φ̂
)

=
1

1, 000

1,000∑
i=1

(
φt − φ̂i

)2
,

where φt is the true value of φ and φ̂i(i = 1, . . . , N) are estimates of φ. Therefore, the RER is given by

RER
(
φ̂
)

=
1

1, 000

1,000∑
i=1

(
1− φ̂i

φt

)2

.

Table 1. RERs for the proposed estimators of the scale parameter σ.

n = 10 n = 20

r 10 8 6 4 20 18 16 14 12 10
σ̂ 0.067 0.085 0.111 0.176 0.034 0.038 0.041 0.047 0.056 0.069
σ̂B 0.059 0.073 0.097 0.139 0.027 0.030 0.032 0.036 0.044 0.051

As shown in Table 1, σ̂B is more efficient than σ̂ in terms of the RER. In addition, RERs for both
estimators increase as r decreases for fixed n.

Figures 1 and 2 show the changes in averages of entropy estimators Ĥ and ĤB for various Type-II
censoring schemes when sample sizes n = 10 and 20, which are obtained over 1, 000 replications.

In comparison to Ĥ , ĤB is closer to the true value Ht. For n = 10, averages of both estimators
increase when r ≤ 7, and for n = 20, they increase when r ≤ 18.

In the Bayesian context, since H is the random variable with the posterior density function (11), the
100(1− ν)% HPD credible interval (HL, HU) for H should meet the following condition:

1− ν =

∫ HU

HL

π(H|x)dH. (14)

Therefore, averages of posterior probabilities (PPs) in HPD credible intervals are computed, along with
coverage probabilities (CPs) of confidence intervals, based on Ĥ for ν = 0.05 and 0.1 through 1,000
simulations. Table 2 reports the results.

The CPs are not very close to their corresponding nominal levels except in some cases, whereas the
HPD credible intervals well satisfy equation (14).
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Figure 1. Averages of entropy estimators Ĥ and ĤB when n = 10.
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Figure 2. Averages of entropy estimators Ĥ and ĤB when n = 20.
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Table 2. CPs of confidence intervals and averages of PPs in HPD credible intervals when
ν = 0.05 and 0.1.

CPs Averages of PPs
n r 90% 95% 90% 95%

10 10 0.899 0.944 0.899 0.949
8 0.882 0.932 0.900 0.950
6 0.884 0.934 0.900 0.949
4 0.881 0.923 0.900 0.949
2 0.855 0.900 0.900 0.950

20 20 0.893 0.944 0.900 0.950
18 0.883 0.938 0.900 0.950
16 0.894 0.936 0.900 0.950
14 0.900 0.945 0.900 0.950
12 0.887 0.939 0.900 0.950
10 0.895 0.933 0.899 0.949
8 0.877 0.924 0.900 0.950
6 0.872 0.930 0.900 0.950
4 0.861 0.926 0.900 0.950
2 0.848 0.901 0.900 0.950

3.2. Real Data

Consider the real data in Lawless [15], which represent the failure time in minutes for a specific type
of electrical insulation material subjected to some continuously increasing voltage stress. The data as
follows:

12.3, 21.8, 24.4, 28.6, 43.2, 46.9, 70.7, 75.3, 95.5, 98.1, 138.6, 151.9.

Balakrishnan and Chan [16] verified that the HLD with the scale parameter provides a good fits to the
data by using the quantile-quantile (Q-Q) plot. In the real data, all possible Type-II censoring schemes
are considered in order to see how estimates of the entropy change. Table 3 shows the results.

For each scheme, σ̂ and σ̂B have very large values and Ĥ and ĤB decrease as r is decreases. In
addition, the HPD credible intervals well satisfy equation (14).

4. Conclusions

This paper provides maximum likelihood and Bayesian methods for estimating the entropy of the
HLD based on Type-II censored samples. With useful properties such as the invariance and asymptotic
efficiency of the MLE, the MLE of entropy and corresponding approximate confidence interval are
derived. In Bayesian inferences, a hierarchical Bayesian approach is considered. Noteworthy is that
the form of the derived hierarchical prior is the same as that of Jeffrey’s prior. In addition, the Bayesian
estimation method based on this prior outperforms the maximum likelihood estimation method.

Conflicts of Interest
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Table 3. Results for Real Data.

r σ̂ σ̂B Ĥ ĤB PPs
12 47.415 47.656 42.002 42.385

(36.431, 47.574) (36.878, 48.279) 0.950
11 49.791 50.010 37.641 38.031

(32.301, 42.981) (32.550, 43.500) 0.949
10 47.717 48.071 32.920 33.350

(27.867, 37.972) (28.255, 38.612) 0.948
9 51.462 51.846 29.708 30.152

(24.867, 34.549) (25.301, 35.342) 0.950
8 49.625 50.019 25.693 26.203

(21.116, 30.270) (21.507, 31.092) 0.950
7 53.510 54.944 22.709 23.227

(18.363, 27.055) (18.916, 28.048) 0.950
6 45.219 46.886 18.244 18.788

(14.209, 22.280) (14.718, 23.176) 0.949
5 50.044 52.337 15.568 16.122

(11.805, 19.331) (12.411, 20.421) 0.950
4 43.413 45.574 11.794 12.346

(8.382, 15.206) (8.948, 16.248) 0.950
3 49.487 51.446 9.184 9.767

(6.149, 12.219) (6.746, 13.372) 0.950
2 65.807 69.732 6.665 7.246

(4.101, 9.229) (4.633, 10.317) 0.948
1 74.256 82.277 3.444 4.043

(1.565, 5.322) (2.068, 6.608) 0.948

The authors declare no conflict of interest.

References

1. Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379-423.
2. Baratpour, S.; Ahmadi, J.; Arghami N.R. Entropy properties of record statistics. Stat. Pap. 2007,

48, 197-213.
3. Abo-Eleneen, Z.A. The entropy of progressively censored samples. Entropy 2011, 13, 437-449.
4. Kang, S.B.; Cho, Y.S.; Han, J.T.; Kim, J. An estimation of the entropy for a double exponential

distribution based on multiply Type-II censored samples. Entropy 2012, 14, 161-173.
5. Seo, J.I.; Kang, S.B. Entropy estimation of generalized half-logistic distribution (GHLD) based on

Type-II censored samples. Entropy 2014, 16, 443-454.
6. Balakrishnan, N. Order statistics from the half logistic distribution. J. Stat. Comput. Sim. 1985,20,

287-309.



11

7. Park, S. Testing exponentiality based on the Kullback-Leibler information with the Type-II
censored data. IEEE Trans. Reliab. 2005, 54, 22-26.

8. Kim, C.; Jung, J.; Chung, Y. Bayesian estimation for the exponentiated Weibull model under
Type-II progressive censoring. Stat. Pap. 2011, 52, 53-70.

9. Sun, D.; Berger, J.O. Reference priors with partial information. Biometrika 1998, 85, 55-71.
10. Han M. The structure of hierarchical prior distribution and its applications. Chinese Oper. Res.

Manage. Sci., 1997, 6, 31-40.
11. Hastings, W.K. Monte Carlo sampling methods using Markov chains and their applications,

Biometrika 1970, 57, 97-109.
12. Metropolis, N.; Rosenbluth, A.W.; Rosenbluth, M.N.; Teller A.H.; Teller E. Equations of state

calculations by fast computing machines. J. Cjem. Phys. 1953, 21, 1087-1092.
13. Roberts, G.O; Rosenthal, J.S. Optimal scaling for various Metropolis-Hastings algorithms. Stat.

Sci. 2001, 16, 351-367.
14. Chen, M.H.; Shao, Q.M. Monte Carlo estimation of Bayesian credible and hpd intervals. J.

Comput. Graphical Stat. 1998, 8, 69-92.
15. Lawless, J.F., Statistical models and methods for lifetime data; John Wiley & Sons: New York,

1982.
16. Balakrishnan, N.; Chan, P.S. Estimation for the scaled half logistic distribution under Type-II

censoring. Comput. Stat. Data an. 1992, 13, 123-141.

c© by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/3.0/).


	Introduction
	Entropy Estimation
	Maximum Likelihood Estimation
	Bayesian Estimation

	Application
	Simulation Study
	Real Data

	Conclusions

