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Abstract

This study investigates the role of leaf shape in detecting disease in tomato plants, grounded
in the observation that plant leaves often undergo structural changes in response to infec-
tion. Healthy and diseased tomato leaves are characterized by extracting shape signature
features from images and analyzing their spectral characteristics. Leaf images were cap-
tured using a Sony ZV-E10 Mark II mirrorless camera equipped with a Sigma 16mm f/1.4
DC DN lens. Each leaf was placed flat on a matte white surface under a controlled over-
head photography setup. The camera was mounted at a fixed height on a tripod, and
uniform illumination was achieved using two symmetrically positioned LED spotlight
lamps, minimizing shadows and glare. The dataset comprises 200 samples: 100 healthy
and 100 diseased tomato leaves, representing a range of morphological and pathological
variations. Three primary shape metrics were extracted from the images to characterize the
structural differences. (1) The Centroid Contour Distance measured the radial distances
from the leaf centroid to its outer contour, (2) The Hausdorff Distance quantified the geo-
metric dissimilarity between contours, and (3) Dice Similarity Index assessed the degree of
overlap. In addition, spectral characteristics were derived from the RGB channels: mean
intensities of red, green, blue, and the Excess Green Index. Results show that both shape
and spectral features are valuable for detecting plant diseases: PCA show clustering pat-
terns between the two classes of leaves and correlation analysis highlights the relationship
between several pairs of geometric and color features. In conclusion, shape is an essential
aspect of plant health as it reflects the structural changes that occur as a result of disease.
When combined with spectral data, can form the basis for an effective, automated disease
detection system.

Keywords: shape analysis; leaf morphology; tomato leaf analysis; centroid contour dis-
tance; Fourier transform

1. Introduction
Plant leaves are highly sensitive indicators of health status and environmental stress.

In tomato (Solanum lycopersicum), one of the most widely cultivated vegetable crops globally,
leaf morphology is directly affected by biotic stresses such as viral, bacterial, and fungal
infections. Plant pathologists have long noted that disease-induced anomalies manifest
not only as color changes but also as structural irregularities such as leaf curling, vein
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distortion, holes from necrosis, or asymmetric growth patterns [1,2]. These morphological
alterations provide critical diagnostic cues that complement spectral signatures and are
particularly useful when color differences are subtle or confounded by environmental
variability. Traditional plant disease recognition approaches have primarily emphasized
texture- and color-based features extracted from leaf images. While spectral indices re-
main valuable, they are often sensitive to illumination conditions, sensor calibration, and
background noise [3]. In contrast, shape-based descriptors capture inherent geometric
properties of leaves that are invariant to lighting and thus less susceptible to extrinsic noise.

Shape analysis in plant studies is well-established [4]. Early work such as Mahdikhan-
lou and Ebrahimnezhad [5] employed centroid distance and the axis of least inertia method
for leaf classification, demonstrating the utility of boundary-based descriptors. More recent
research has explored hybrid approaches that integrate shape with color features: for
instance, Yigit et al. [6] combined geometric descriptors (e.g., length, area, perimeter) with
RGB statistics to train AI-based leaf identification models. Similarly, the MASS frame-
work (Morphological Analysis of Size and Shape) introduced by Chuanromanee et al. [7]
formalized morphometric analysis to enable streamlined comparisons across botanical
datasets. CCD-based methods have successfully distinguished canonical leaf classes such
as elliptic, cordate, and ovate with high recognition accuracy [8,9], and have also been
applied in automated plant identification systems [10,11]. Extensions of CCD incorporate
Fourier analysis, where normalized radial distance signatures are transformed into the
frequency domain to extract rotation-, translation-, and scale-invariant features [12,13].
Such Fourier-based descriptors allow fine-grained capture of contour variability beyond
what is achievable with geometric indices alone.

Several studies have explored frequency-domain approaches for contour-based shape
analysis. Lee et al. [13] developed an FFT-based leaf recognition system in which shape fea-
tures—extracted as centroid-to-boundary distances—were transformed into the frequency
domain. From this, they derived a compact feature set of ten descriptors incorporating both
magnitude and phase information. More recently, Wu et al. [14] introduced a novel elliptic
Fourier descriptor (EFD) normalization method which ensures invariance to translation,
rotation, scaling, starting point selection, and symmetry transformations. The authors also
released a user-friendly software tool called ElliShape, which combines interactive contour
extraction with the new normalization approach. Earlier work by Neto et al. [15] employed
elliptic Fourier analysis and discriminant function analysis to classify plant species specif-
ically soybean, sunflower, redroot pigweed, and velvet leaf—based on leaf shape. They
generated EFDs from chain-coded boundary contours and used these features in species
classification tasks. Beyond CCD and Fourier techniques, morphometric frameworks
have also been applied to broader taxonomic contexts. Oso and Jayeola [16] investigated
exploratory and confirmatory landmark-based geometric morphometrics within the Cucur-
bitaceae family, a group with high leaf-shape diversity. Using MorphoLeaf, they generated a
dataset of 140 specimens across seven species through landmark extraction, contour repa-
rameterization, and normalization. Similarly, Prasetyo et al. [17] applied boundary-based
descriptors, including CCD-derived Boundary Moments, along with texture and color
features, for mango leaf variety classification. Haque and Haque [18] applied leaf image
analysis to extract geometric parameters including area, perimeter, length, and width,
and used these features for plant identification. Collectively, these studies highlight that
morphometric descriptors whether centroid-based, frequency-based, or landmark-based,
provide a robust toolkit for capturing taxonomically and biologically relevant variation in
leaf morphology.

While CCD, Fourier technique, and other geometric shape descriptors have demon-
strated strong utility in botanical classification tasks, their application to distinguishing
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healthy versus diseased tomato leaves remains under-explored. In particular, pairwise
contour similarity metrics such as the Hausdorff distance and Dice similarity index, com-
monly used in computer vision for object comparison, have not been widely leveraged
to quantify disease-associated shape distortions or boundary irregularities in plants. To
address these gaps, this study establishes a pipeline that spans controlled image acquisition,
automated segmentation, and extraction of shape-based features. Shape characterization is
conducted using CCD, Fourier-based descriptors, and pairwise similarity metrics, while
complementary spectral indices derived from RGB channels provide color-based cues. To
assess discriminability, dimensionality reduction and unsupervised embedding techniques
are applied, including Principal Component Analysis (PCA) and t-distributed Stochastic
Neighbor Embedding (t-SNE). The primary contributions of this work are as follows:

• Construction of a new dataset of tomato leaves, acquired under controlled imaging
conditions, and segmentation using the Segment Anything Model (SAM).

• Comprehensive analysis of shape descriptors (CCD, FRS, Hausdorff distance, Dice
similarity) to characterize healthy vs. diseased leaves.

• Evaluation of combined shape and spectral feature sets through PCA and t-SNE
embeddings to investigate class separability and clustering behavior.

2. Materials and Methods
Figure 1 illustrates the pipeline adopted in this study, designed to extract shape fea-

tures from tomato leaf images and enable quantitative shape comparisons across health
conditions. The framework is structured around four stages: image acquisition, segmenta-
tion and contour extraction, shape extraction, and leaf-level comparison.

Figure 1. The Process Framework.

2.1. Data Collection

The tomato species used is Solanum lycopersicum L. 1753. Leaf samples are initially
collected using Sony ZV-E10 Mark II mounted with Sigma 1.4 fixed aperture lens. The leaf
sample is illuminated using two led light boxes to minimize shadowing and nonuniform
light and is 20 cm away from the end part of the lens hood. The schematic diagram of
this setup is illustrated in Figure 2. After acquisition, the leaf samples are segmented
from background using Segment Anything Model algorithm specifically the sam_vit_h.
Binary contour images were generated by segmenting each leaf to isolate the primary
outline. Figure 3 shows sample instances of healthy and unhealthy leaves and the masking
+ contour extraction process.
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Figure 2. The Leaf Image Acquisition Setup.

Figure 3. Several Instances of Healthy and Unhealthy Leaves and the Binary Masks.

2.2. Centroid Contour Distance (CCD) and Fourier Signatures

Given a closed contour represented as a set of 2D points {(xi, yi)}N
i=1 and its centroid

(cx, cy), the CCD function r(θ) measures the distance from the centroid to the contour at
uniformly sampled angles. Formally,

r(θ) = max
(x,y)∈contour

∠(x−cx ,y−cy)=θ

√
(x− cx)2 + (y− cy)2, θ ∈ [0, 2π).

We sample Nθ = 360 angles to produce a vector r ∈ R360. To ensure scale invariance,
we normalize this curve by its mean radius:

r̃(θ) =
r(θ)

r̄
, r̄ =

1
2π

∫ 2π

0
r(θ) dθ.

To enforce rotation invariance, we circularly shift r̃ such that the maximum radius oc-
curs at a fixed angle, aligning the longest direction across leaves. This produces normalized
CCDs that reflect pure shape, independent of size or orientation. Figure 4 illustrates the
process. The normalized CCD r̃(θ) is transformed via the 1D discrete Fourier transform
(DFT), yielding complex coefficients Fk:

Fk =
1

Nθ

Nθ−1

∑
n=0

r̃(θn)e−i2πkn/Nθ , k = 0, . . . , Nθ/2.
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We exclude the DC component F0 (mean already normalized), and retain the magni-
tudes |Fk| of the first K = 30 harmonics, forming the Fourier radial signature vector:

s = [|F1|, |F2|, . . . , |F30|].

This representation captures periodic patterns along the contour, encoding global
features (low frequencies) and local margin irregularities (high frequencies). Using mag-
nitudes ensures phase invariance, allowing shape comparison regardless of rotational
alignment.

Figure 4. Normalized Centroid Contour Distance of Healthy vs. Unhealthy Leaf.

2.3. Elliptic Fourier Descriptors (EFDs)

While CCD captures radial fluctuations, it remains sensitive to local noise. To provide a
complementary and robust global shape descriptor, we employed Elliptical Fourier Descrip-
tors (EFD). Given a closed contour parameterized by sequential boundary coordinates
{(x(t), y(t))}N

t=1, the boundary can be expressed as a truncated Fourier series:

x(t) = a0 +
K

∑
n=1

[
an cos

( 2πnt
T
)
+ bn sin

( 2πnt
T
)]

,

y(t) = c0 +
K

∑
n=1

[
cn cos

( 2πnt
T
)
+ dn sin

( 2πnt
T
)]

,

where K is the harmonic order, and (an, bn, cn, dn) are the Fourier coefficients. Each har-
monic captures progressively finer details of the outline. In this study, we fixed K = 15
harmonics to balance reconstruction fidelity and descriptor compactness. To ensure com-
parability across leaves, EFD coefficients were normalized: translation invariance by re-
moving a0, c0, scale invariance by dividing by the first harmonic’s amplitude, and rota-
tion invariance by aligning the first ellipse to the x-axis. This yields a canonical repre-
sentation of each outline that is independent of position, size, or orientation. To quan-
tify intra- and inter-group variability, we compared pairs of normalized outlines using
two complementary metrics:

• Hausdorff distance (HD): Measures the maximum deviation between two point sets.
This reflects the worst-case dissimilarity between contours.
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• Dice coefficient (DC): Evaluates area overlap between two binary masks. For masks
MA, MB,

DC(MA, MB) =
2|MA ∩MB|
|MA|+ |MB|

.

The Dice coefficient ranges from 0 (no overlap) to 1 (perfect match), capturing volu-
metric similarity rather than boundary extremes.

Both metrics complement each other: Hausdorff emphasizes boundary discrepancies,
while Dice reflects overall shape overlap. For robust comparisons, we rasterized all EFD-
reconstructed contours onto a common canvas with shared global scaling, ensuring fair
Dice evaluation across groups. Figure 5 shows instance of how to leaf images of same scales
are normalized for FT analysis. For both healthy and unhealthy groups, representative
leaves are shown with radial rays emanating from the centroid. These rays sample distances
from the centroid to the contour at fixed angular intervals, forming a 1D signature vector
for each leaf.

Figure 5. Two sample leaves of healthy vs. unhealthy class and their shape signal characteristics (left
to right, top to bottom): (a) Representative leaf contour with centroid marked, (b) Radial rays sampled
uniformly around the centroid, illustrating distance measurements to the contour. (c) Group mean
radial signature (solid line) with ±1σ variability (shaded region), representing shape consistency
across samples, (d) Representative contour re-oriented such that the maximum radius aligns to 90◦

(upward), (e) Aligned group mean radial signature, and (f) Fourier magnitude spectrum of the mean
signature, revealing dominant spatial frequencies associated with margin irregularities.

3. Results
3.1. CCD and EFD

Figure 7 presents that unhealthy leaves deviate from healthy leaves across wide
angular ranges; the polar view emphasizes relatively larger radii for the unhealthy group
in apical and basal directions. Using normalized CCD curves and their Fourier radial
signatures, we evaluated differences in shape between healthy and unhealthy tomato
leaves. To assess global morphological differences in the CCD domain, we performed a
functional max-|t| permutation test across the 360-sample CCD curves. The global p-value
was p = 0.01245, indicating statistically significant shape differences localized at specific
angular perspective. Fourier radial signatures (FRS) further enabled a frequency-domain
analysis of contour shape. We computed magnitude spectra from the first 30 harmonics after
discarding the DC term, capturing both global and local shape characteristics. Using the
energy distance metric, we observed a substantial distributional separation between healthy
and unhealthy FRS vectors (E = 0.0043, p = 5.000× 10−5, permutation test). Additionally,
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a multivariate Hotelling-like T2 test across the 30D Fourier signature vectors revealed
a highly significant group difference (T2 = 100.5222, p = 5.000 × 10−5, permutation-
based). Together, these analyses confirm that the overall radial structure of unhealthy
leaves deviates significantly from healthy counterparts, both in direct spatial comparison
(CCD) and in harmonic decomposition (FRS), capturing disease-related shape alterations
in a scale-, rotation-, and phase-invariant manner.

Figure 6 further quantifies the differences. The leftmost image shows the aligned
mean radial signature curves across all samples. The rightmost displays the corresponding
Fourier magnitude spectra, where unhealthy leaves tend to exhibit stronger amplitudes at
certain harmonics. A global permutation test was conducted on the full Fourier spectra to
determine whether spectral profiles of the two groups differ significantly. The test yielded a
global statistic of Tobs = 0.550, with a permutation p-value of 0.0096, confirming statistically
significant group-level differences in the frequency domain.

Figure 6. Radial Signature and FFT Plots (left to right): (a) Comparison of mean radial signatures
between healthy (blue) and unhealthy (orange) tomato leaves, and (b) Fourier spectra of mean radial
signatures for healthy and unhealthy groups. Amplitudes are shown in decibels as a function of
spatial frequency (cycles per 360◦).

Figure 7. Mean CCD Curves (from left to right): Normalized CCD vs. Angle, CCD in Polar Coordi-
nates, and Fourier Radial Signature of Healthy vs. Unhealthy Leaves.

We decomposed the CCD curves into Fourier descriptors (Figure 7, right) to further
quantify these differences in a compact harmonic space. The first few harmonics captured
the majority of the contour variation, with unhealthy leaves showing consistently larger
amplitudes at low- to mid-frequency components. Energy distance testing revealed a highly
significant distributional difference between groups (E = 0.0043, p = 5.0× 10−5), confirm-
ing that the global shape signatures of unhealthy leaves are distinct. Moreover, several
individual harmonics were identified as significantly different after multiple-comparison
correction (green stars), suggesting that unhealthy leaves not only differ in overall shape
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magnitude but also exhibit characteristic deviations in specific harmonic modes. Taken
together, the CCD and Fourier analyses provide convergent evidence that unhealthy leaves
exhibit systematic geometric distortions. The CCD approach highlights continuous contour-
level deviations, while the Fourier descriptor analysis confirms that these deviations persist
when shapes are summarized in a lower-dimensional harmonic space. These results demon-
strate that leaf health status is reliably associated with quantifiable differences in contour
geometry. Because CCDs are normalized by each leaf’s mean radius and anchored at the
centroid, the reported effects reflect shape rather than absolute size or position; uniform
rescaling or translation does not affect conclusions. The Fourier-magnitude descriptors ad-
ditionally remove dependence on in-plane rotation. Consequently, the detected differences
implicate anisotropic deformations and localized boundary irregularities characteristic of
unhealthy leaves, rather than trivial imaging factors.

3.2. Pairwise Shape Cohesion and Cross-Group Divergence

We quantified outline similarity using EFD. Prior to reconstruction we removed trans-
lation, rotation, uniform scale, and starting-point effects, so that downstream comparisons
reflect shape alone. From these reconstructions we computed pairwise Hausdorff distance
and Dice similarity both within and across health states as seen in Table 1 and associated
box plot visualization in Figure 8. Within the healthy group, shapes were tightly clustered
(Hausdorff: mean 0.305, SD 0.076; Dice: mean 0.847, SD 0.040). Unhealthy shapes were
more dispersed (Hausdorff: mean 0.355, SD 0.093; Dice: mean 0.783, SD 0.068). Cross-group
comparisons (healthy–unhealthy) lay between these regimes (Hausdorff: mean 0.339; Dice:
mean 0.807). In practical terms, a random healthy pair was ∼16% closer in Hausdorff
distance than a random unhealthy pair (0.305 vs. 0.355) and overlapped by ∼8% more Dice
(0.847 vs. 0.783). Cross-group similarity was closer to the unhealthy distribution than to the
healthy one, consistent with greater morphological heterogeneity among unhealthy leaves.

Table 1. Summary statistics for Hausdorff distance (lower is better) and Dice coefficient (higher is
better).

Group n Mean Std 25% Median 75%

Hausdorff distance
H–H 4950 0.3052 0.0759 0.2528 0.3014 0.3537
U–U 4950 0.3553 0.0932 0.2901 0.3482 0.4104
H–U 10,000 0.3388 0.0852 0.2782 0.3338 0.3924

Dice coefficient
H–H 4950 0.8465 0.0400 0.8196 0.8492 0.8754
U–U 4950 0.7829 0.0676 0.7470 0.7921 0.8300
H–U 10,000 0.8067 0.0600 0.7750 0.8146 0.8479

These findings agree with the EFD summary: healthy leaves occupy a tighter region
of normalized shape space: higher Dice, lower Hausdorff, whereas unhealthy leaves are
more dispersed. Fourier-domain summaries showed larger mean amplitude and variability
for unhealthy leaves (FD mean 3.23 × 105 vs. 2.67 × 105; FD std 1.21 × 106 vs. 1.00 ×
106), and spatial-domain CCD statistics were both higher and more variable on average
(centroid–distance mean 380.25 vs. 358.08; std 117.56 vs. 102.89). Together, the evidence
indicates that unhealthy outlines deviate more from a compact, centrally balanced form,
exhibiting greater radial unevenness and stronger low–to–mid frequency content—while
healthy leaves remain more mutually consistent. Importantly, the unhealthy cohort is not
uniformly “more complex” at high frequencies; it is more variable, that increase dispersion.
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Figure 8. Box Plot of Dice and Hausdorff Distances for Different Groups.

For each leaf we also computed its mean Hausdorff and Dice to all other leaves within
the same class (within-group) and to leaves from the opposite class (cross-group), yielding
four per-leaf distributions. This reduces dependency from pairwise counting and supports
valid inference across groups. Results are reported in Table 2. In within-group similarity,
healthy leaves are more cohesive. Healthy leaves exhibited significantly higher structural
cohesion, as reflected in both lower Hausdorff distances and higher Dice similarity scores.
Effect sizes were large (e.g., δ = 0.907 for Dice), suggesting that healthy leaf shapes are
more uniform. In contrast, diseased leaves showed greater structural variability, indicating
that disease disrupts shape regularity. For cross-group similarity: average proximity to the
opposite class is similar. Cross-group comparisons revealed no significant differences in
pairwise similarity metrics, with near-identical mean Hausdorff and Dice values across
groups. Although there was a marginal trend toward higher Dice similarity within the
healthy group (p = 0.055), overall, the shapes were not clearly separable based on these
metrics alone. While shape-based descriptors capture intra-group consistency effectively,
especially among healthy leaves, they offer limited discriminability between healthy and
diseased groups when used in isolation. Overall, morphological stress manifests primarily
as increased within-class variability rather than a uniform displacement in shape space.
This has methodological implications: classifiers that rely solely on distance to a single class
prototype may underperform, whereas approaches that capture shape regularity, boundary
smoothness, and dispersion—potentially combined with spectral features or texture—are
better aligned with the observed data.
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Table 2. Statistical comparison of Healthy (A) vs. Unhealthy (B) leaves using Hausdorff distance
(lower is better) and Dice coefficient (higher is better).

Setting Group n Mean Median SD MW U (p) Effect Sizes/Other Tests

Within-group
Hausdorff A (Healthy) 100 0.3043 0.2970 0.0358 1799.0 (5.28× 10−15) rrb = 0.640, δ = −0.640 [CI: −0.748, −0.519],

B (Unhealthy) 100 0.3547 0.3504 0.0471 g = −1.202; BM = 10.907 (p = 1.42× 10−21)
Dice A (Healthy) 100 0.8465 0.8512 0.0220 9537.0 (1.49× 10−28) rrb = −0.907, δ = 0.907 [CI: 0.848, 0.955],

B (Unhealthy) 100 0.7829 0.7921 0.0385 g = 2.019; BM = −33.688 (p = 1.32× 10−69)

Cross-group
Hausdorff A (Healthy) 100 0.3381 0.3343 0.0349 5357.0 (0.384) rrb = −0.071, δ = 0.071 [CI: −0.091, 0.233],

B (Unhealthy) 100 0.3381 0.3230 0.0545 g = 0.000; BM = −0.855 (p = 0.394)
Dice A (Healthy) 100 0.8073 0.8099 0.0187 4214.0 (0.0549) rrb = 0.157, δ = −0.157 [CI: −0.327, 0.009],

B (Unhealthy) 100 0.8073 0.8156 0.0488 g = 0.000; BM = 1.826 (p = 0.0702)

The leftmost panel of Figure 9 displays a scatter–histogram matrix for six representa-
tive features (perimeter, area, mean R/G/B, and solidity) stratified by group (healthy in
blue, unhealthy in orange). Two patterns are immediately apparent. First is size covariation.
Perimeter and area are strongly linearly related (upper–left block), as expected for similarly
shaped objects at different scales. Consistent with the univariate summaries reported
earlier, the unhealthy cohort tends to occupy slightly larger values on both axes. Second is
margin compactness. Solidity (area/convex–hull area) shows a clear negative association
with perimeter and area—leaves with longer boundaries tend to be less compact (more
lobed/indented). For a given size, unhealthy leaves are shifted toward lower solidity,
matching the group means of unhealthy 0.816 vs. healthy 0.857, and indicating greater
boundary irregularity in the diseased group. The RGB-channel histograms show only mod-
est between-group shifts and substantial overlap. This aligns with the broader findings:
healthy leaves are more cohesive (higher Dice, lower Hausdorff), whereas unhealthy leaves
are more dispersed in shape. These dependencies motivate the use of normalized CCD and
Fourier radial signatures—which decouple scale and orientation and summarize boundary
fluctuations—rather than relying on raw perimeter/area alone.

Figure 9. Pairplot of Select Features, PCA, and tSNE plots.

Figure 9 also illustrates the comparison of linear (PCA) and non-linear (t-SNE, per-
plexity = 5) embeddings for three feature sets: Fourier+Spectral+Shape, Fourier+Spectral, and
Spectral only. In PCA, Spectral only attains the highest separation on the first two components
(Silhouette = 0.23), matched by Fourier+Spectral (0.23) and exceeding Fourier+Spectral+Shape
(0.14). PC1 explains the greatest variance for Spectral only (about 78.9%), followed by
Fourier+Spectral (66.5%) and Fourier+Spectral+Shape (52.3%), indicating that the strongest
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linear class signal lies in the RGB and ExG channels. The non-linear t-SNE projections yield
moderately higher silhouettes (0.30 for Fourier+Spectral+Shape, 0.27 for Fourier+Spectral,
0.28 for Spectral only), showing that some class structure is non-linear and is better revealed
by a manifold method than by PCA. However, the absolute silhouette values remain mod-
est (all ≈ 0.27–0.30), meaning the two classes still overlap in the embedded space rather
than forming perfectly separated clusters. These results indicate that there are statistically
detectable group differences in radial/spectral descriptors, yet unhealthy leaves exhibit
broader shape dispersion, which keeps unsupervised clusters only moderately separated.

4. Conclusions and Recommendations
This study presented a pipeline for quantifying tomato-leaf shape features from

contour masks: centroid–contour distance (CCD), Fourier radial signatures (FRS), and
normalized EFD reconstructions for pairwise comparisons. The analyses converge on
three observations.

First, group differences exist in the radial and spectral domains. Normalized CCD
curves differ by a functional max- |t| permutation test (pglobal = 1.245× 10−2), and the
corresponding Fourier signature vectors differ by both a Hotelling-like T2 permutation test
(T2 = 100.52, p = 5× 10−5) and an energy-distance test (E = 0.0043, p = 5× 10−5). These
results indicate that disease is associated with systematic changes in the radial structure and
its frequency content. Second, healthy leaves are more cohesive; unhealthy leaves are more
heterogeneous. Within–group EFD comparisons show markedly lower Hausdorff distances
and higher Dice overlaps for healthy leaves than for unhealthy ones (e.g., mean Hausdorff
0.304 vs. 0.355; mean Dice 0.847 vs. 0.783), with large effect sizes. By contrast, cross–group
means are similar (Hausdorff ≈ 0.338, Dice ≈ 0.807), consistent with substantial overlap
of the two populations in normalized shape space. Third, unsupervised separation is
moderate. PCA on spectral statistics yields higher linear separability (silhouette ≈ 0.23)
than when many shape descriptors are appended (down to ≈ 0.14). Non-linear t-SNE
views increase silhouettes to ≈ 0.27–0.30, but clusters remain overlapping. Pairwise feature
plots further show that unhealthy leaves tend to have slightly larger perimeter/area and
lower solidity, but with wide overlap.

Given the results, the study recommends a supervised fusion of spectral statistics
with the shape features (CCD/FRS/EFD), since spectral features provide the clearest linear
signal in PCA whereas CCD/FRS capture the statistically significant radial and frequency
differences between groups. Inputs should remain rotation– and scale–invariant and in-
ference should rely on per–leaf summaries rather than raw pairwise matrices to avoid
dependency bias. Because unsupervised separation is only moderate, models that can
weight features with supervision and incorporate regularization are preferable to unsuper-
vised 2D projections. To improve generalizability, we recommend increasing the dataset
size beyond the current 100 healthy and 100 unhealthy leaves. Although statistical differ-
ences were detected between groups using both shape and spectral features, the sample
size may limit the robustness of more complex models. Expanding the dataset to include
more intra-class variability—such as different cultivars, growth stages, or mild disease
cases—could improve model sensitivity and reduce overfitting. Including additional shape
descriptors such as EFDs or curvature-based metrics may further enhance discrimination,
especially when combined with the current centroid- and frequency-based signatures.
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