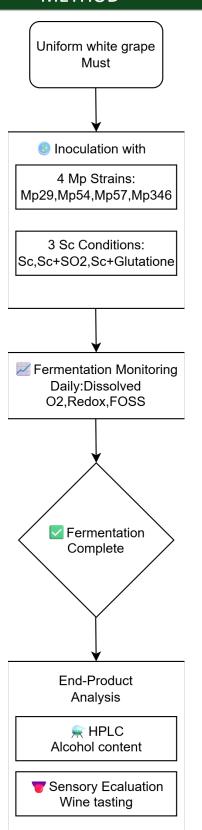
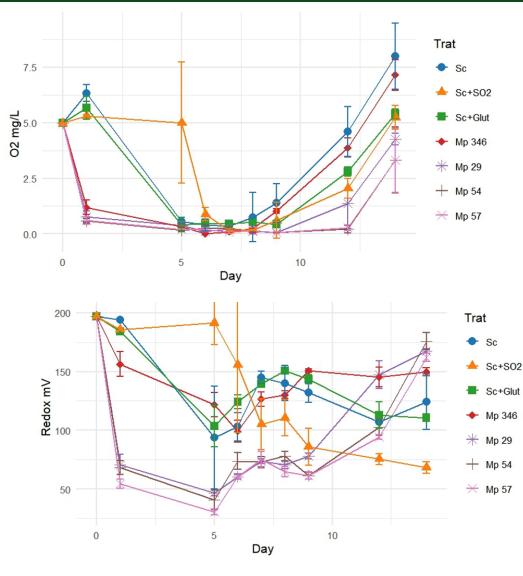
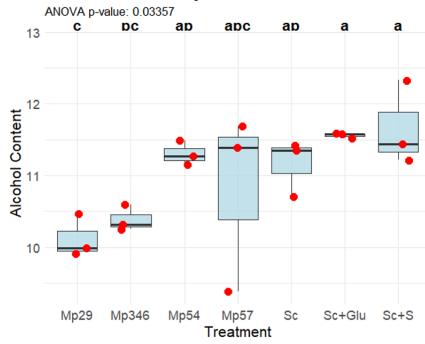
12-13 November 2025 | Online


Traditional vs Bioprotection: Comparative Evaluation of Four Metschnikowia pulcherrima Strains in fermentation

Jiachang Zhang, Juan Manuel del Fresno, Felipe Palomero, Carmen Gonzalez, Antonio Morata Universidad Politécnica de Madrid, ETSIAAB, Chemistry and Food Technology Dept.enotecUPM, Avenida Puerta de Hierro, 2, 28040, Madrid, Spain.


INTRODUCTION & AIM

The growing demand for low-sulfur wines underscores the need for effective alternatives. This study evaluated four Metschnikowia pulcherrima strains as bioprotectants, comparing their efficacy against conventional additives—SO₂ and glutathione—in Saccharomyces cerevisiae fermentations. Results demonstrate that M. pulcherrima outperformed traditional methods by delivering superior oxygen management, maintaining lower oxidative stress, and imparting distinct floral notes. This establishes bioprotection yeasts as a viable, sustainable strategy for premium winemaking.


METHOD

RESULTS & DISCUSSION

Alcohol Content by Treatment

Rapid Oxygen Depletion:All Mp strains efficiently scavenged dissolved oxygen, dropping it to negligible levels within two days.

Early-Stage Redox Control: Three strains (Mp29, Mp52, Mp54) rapidly lowered the redox potential to ~50 mV shortly after inoculation.

Limited Long-Term Protection: The SO₂ control maintained a more stable redox potential over time, whereas the M. pulcherrima groups showed a gradual increase post-day 9, highlighting a limitation in their endurance.

Significant Alcohol Reduction: Fermentations with M. pulcherrima, particularly Mp29 and Mp346, yielded wine with at least 1.0% v/v lower alcohol content than all S. cerevisiae controls.

CONCLUSION

Bioprotection with **M. pulcherrima** yeasts rapidly depletes oxygen and significantly lowers alcohol content, **offering a promising pathway to reduce global SO₂ usage in winemaking.**

REFERENCES

- Puyo, M., et al. (2023). Bio-protection in oenology by Metschnikowia pulcherrima. Front. Microbiol., 14, 1252973.
- 2. Sizzano, F., et al. (2022). Bioprospecting of a Metschnikowia pulcherrima Indigenous Strain... Foods, 12(24), 4485.
- 3. Morata, A., et al. (2019). Applications of Metschnikowia pulcherrima in Wine Biotechnology. Fermentation, 5(3), 63.