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Abstract 

UAV-mounted multispectral sensors are widely used to study crop health. Utilising the 

same cameras to capture close-up images of crops can significantly improve crop health 

evaluations through multispectral technology. Unlike RGB cameras that only detect visi-

ble light, these sensors can identify additional spectral bands in the red-edge and near-

infrared (NIR) ranges. This enables early detection of diseases, pests, and deficiencies 

through the calculation of various spectral indices. In this work, the ability to use UAV-

multispectral sensors for close-proximity imaging of crops was studied. Images of plants 

were taken with a Micasense Rededge-MX from top and side views at a distance of 1 m. 

The camera has five sensors that independently capture blue, green, red, red-edge, and 

NIR light. The slight misalignment of these sensors results in a shift in the swath. This 

shift needs to be corrected to create a proper layer stack that could allow further pro-

cessing. This research utilised the Oriented FAST and Rotated BRIEF (ORB) method to 

detect features in each image. Random sample consensus (RANSAC) was used for feature 

matching to find similar features in the slave images compared to the master image (indi-

cated by the green band). Utilising homography to warp the slave images ensures their 

perfect alignment with the master image. After alignment, the images were stacked, and 

the alignment accuracy was visually checked using true colour composites. The side-view 

images of the plants were perfectly aligned, while the top-view images showed errors, 

particularly in the pixels far from the centre. This study demonstrates that UAV-mounted 

multispectral sensors can capture images of plants effectively, provided the plant is cen-

tred in the frame and occupies a smaller area within the image. 
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1. Introduction 

UAV-remote sensing has revolutionised crop health monitoring by providing remote 

sensing images on demand for calculating crop health metrics [1–7]. The remote sensing 

images collected from a variety of sensors have made UAV-based remote sensing a main-

stay in precision agriculture [8]. Images from RGB sensors provide very high-resolution 

images [9]. Data from hyperspectral sensors is highly valuable as it provides detailed 
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spectral information about the crops [10]. However, RGB sensors offer limited spectral 

information, whereas hyperspectral sensors, while more comprehensive, are often pro-

hibitively expensive [11]. Multispectral sensors offer a good balance between RGB and 

hyperspectral sensors, providing essential spectral depth at a lower cost [12]. UAVs 

equipped with multispectral imaging sensors are commonly used to monitor crop growth 

in fields because they provide advantages over other sensors [13]. The use of these sensors 

has yielded outstanding results in the analysis of field crops from a UAV [14]. But the 

design limitations have restricted its use for capturing close-up images from low-flying 

UAVs or for crops growing in pots [15].  

Proximal imaging with multispectral sensors can provide valuable information about 

pests, diseases, and other stresses affecting crops by utilising visual and spectral data [16]. 

While water and nutrient stress in crops can be detected using vegetation indices and 

other methods that analyse spectral signatures [17]. Crops' pests and diseases can only be 

identified through close-range remote sensing images that capture leaf symptoms [18]. 

These limitations have led the agriculture community to invest in various sensors for dif-

ferent needs, increasing the cost of crop health monitoring and precision agriculture [19]. 

Removing the limitations of current multispectral sensors could enable their use with 

UAVs and for close-range imaging, benefiting the entire community [20].  

Currently, multispectral sensors feature a rig with multiple cameras, each sensitive 

to specific parts of the electromagnetic spectrum (EMR). Each camera is placed separately 

to avoid obstructing the field of view of others. This placement creates a shift in FOV and 

causes variations in the images captured by the cameras. For example, for the Micasense 

RedEdge-MX (MX) five-band sensor, five distinct images will be captured by each camera 

for every individual instance. All the images will have a parallax shift due to the position 

of the cameras [21]. This change in images complicates the process of stacking individual 

layers, making it exceedingly challenging [22]. OEMs recommend flying UAVs at alti-

tudes above 15m to ensure that most of the area of interest is at the centre of the images, 

where shifting errors are typically lower. At close distances, the parallax shift greatly im-

pacts images because the object of interest takes up most of the frame, making the align-

ment challenging [15]. Addressing the challenges arising due to the sensor's distance from 

objects can enhance its usability in agriculture [23].  

Computer vision methods are often favoured for aligning images with parallax errors 

or disorientations compared to complex deep learning models and simple GPS-based 

alignment procedures [24]. Computer vision-based feature matching approaches are data-

agnostic, lightweight, and offer strong generalisation across diverse scenes and spectral 

conditions [25]. The ORB (Oriented FAST and Rotated BRIEF) algorithm is a computer 

vision method known for its efficiency, accuracy, and robustness. ORB combines the FAST 

corner detection algorithm with orientation estimation and BRIEF descriptor extraction, 

making it invariant to scale and rotation. Its use of binary descriptors and Hamming dis-

tance matching enables quick feature comparison while retaining strong discriminative 

power, even in distorted views [26]. Further, ORB is fully open-source and free of patents, 

which makes it perfect for scalable research and real-time applications in agriculture and 

remote sensing [26]. Thus, ORB is a preferred option in the computer vision field for mul-

timodal image registration tasks due to its robustness across different image resolutions, 

lightweight computational requirements, and strong performance in low-texture scenes, 

such as vegetation [26]. The Random Sample Consensus (RANSAC) algorithm, often used 

with ORB, helps remove outliers from feature matches in computer vision [27]. It works 

by iteratively selecting random subsets and estimating the best-fitting transformation 

model. This work uses the RANSAC method to improve the matching of features detected 

in different spectral bands by eliminating mismatches from parallax errors [27]. After find-

ing reliable matches, a homography matrix is created to align each slave image with the 
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reference band geometrically [28]. This transformation preserves spatial consistency 

across bands, enabling precise layer stacking for further multispectral analysis [28]. The 

study aims to enhance the use of current UAV-mounted sensors for close-range applica-

tions, lessen reliance on specialised equipment, and provide more accessible and afforda-

ble crop monitoring solutions in various agricultural situations. The main goal is to create 

and test a reliable image alignment pipeline using the ORB feature detection and matching 

technique, along with RANSAC for homography estimation. This approach aims to align 

individual spectral bands captured at low altitudes to create high-quality stacked multi-

spectral composites for plant health analysis. Using the pipeline, this study evaluates the 

use of the UAV-mounted MX sensor for close-range crop imaging to address parallax-

induced misalignments in multispectral imagery. 

2. Study Area 

ICAR - Indian Agricultural Research Institute (IARI) is a leading agricultural research 

centre located in New Delhi, India. It has several essential facilities for research on various 

agricultural topics. One such facility is the Big Data Analytics Lab (BDL Lab) (28.639541, 

77.162105). The BDL lab uses remote sensing data from ground sensors, UAVs, and satel-

lites to evaluate crop health in different ways. The study was conducted at the Big Data 

Analytics lab, where the MX sensor was used to assess the health of potted plants. Crops 

in the pots were subjected to multiple treatments to see their reaction to nutrient and water 

stress treatments. The MX sensor was applied to assess the impact of these treatments as 

a remote sensing sensor. The problem of parallax error was first observed during the ini-

tial image alignment and layer stacking process. The methodology applied here will ad-

dress the image alignment issues so that the health of these potted plants can be assessed 

from the MX images.  

 

Figure 1. Shows the location of the BDL lab. 

3. Methodology 

3.1. Experiment Setup 

The MX sensor was used to capture an image of the subject (potted plants) from either 

the top or side view. For top-view photos, the sensor was placed directly above the plant 

in the nadir position at a distance of 1.5 m from the plant. For the side view, the camera 

was placed on a tripod at 1.5 m from the plant. It was ensured that the object was in the 

centre of the frame. The MX camera was connected to a mobile device using the wifi gen-

erated from the sensors. After the sensor is connected, we can access the control panel for 

the sensor in any web browser by entering the IP address 192.168.10.254 into the search 

bar of the browser. From the control panel, all the functions of Micasense, like camera 
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triggering and live image feed visualisation, can be controlled. Once the sensor is ready 

with all the required settings, images of the crops were captured, and the raw images were 

used for further analysis. For the top view, the pot is placed on a black uniform back-

ground with markers indicating the edge of the crop. Further, the image also shows a 

calibration panel placed on the flat ground, along with a label panel with the name of the 

specimen. This image was taken outdoors under natural sunlight. The side-view image 

was captured indoors under artificial lights. A potted indoor plant was used as a subject, 

and we did not use any background to see how the alignment works when images have 

diverse backgrounds. Since computer vision-based ORB methods are being used for im-

age alignment, these diverse backgrounds and lighting conditions, along with plants, will 

reveal the robustness of the techniques. 

3.2. Image Layer Staking 

Figure 2 shows the process followed while layer stacking the proximal MX images. 

Figure 2 shows two sets of images; the first image is taken from the nadir position when 

the camera is positioned directly above the crop. A potted wheat crop in its early growth 

stage was used as a subject for this image. There are five images, one for each band. The 

brightest of the images is the NIR image, followed by rededge and green, due to the crop’s 

high reflectance in these bands. The red and blue images are dark, suggesting high ab-

sorbance in these bands. Similarly, the second set of images shows a potted indoor plant 

captured from the MX sensor from a side view. These images are promptly labelled and 

can be visualised in Figure 2.  

The images were processed in a Python 3.12 environment. The ORB technique was 

accessed from the OpenCV library. OpenCV was used for image processing, feature de-

tection, matching, warping and drawing of the images. In addition, the numpy, rasterio, 

and matplotlib.pyplot libraries were used for numerical operations, generating a multi-

spectral layer stack, and displaying images and matches, respectively. The MX provide 

individual images in TIFF format; these images are read using the rasterio library. The 

OpenCV library was used to set up ORB flow for the images. In the first step, the ORB 

uses the Features from the Accelerated Segment Test (FAST) method, a corner detection 

algorithm, to quickly detect keypoints in the images. The FAST approach is particularly 

known for its speed and is generally used for real-time applications like object tracking or 

image alignment. The FAST approach looks at each pixel and 16 pixels surrounding it (a 

Bresenham circle). It checks if a certain number of contiguous pixels in that circle are all 

significantly brighter or darker than the centre pixel. If there is a significant change, the 

centre pixel is marked as an edge pixel. Figure 2 shows the keypoints detected in each 

image from the corresponding views. Each edge pixel is indicated by a small circle drawn 

around it by the FAST detection algorithm.  

FAST detects key points, but does not provide orientation to the key points. Orienta-

tion is a really important feature that tells the dominant direction and rotation angle of a 

key point. While this is happening, the ORB also uses the Binary Robust Independent El-

ementary (BRIEF) descriptor to provide a unique ID to individual key points by compar-

ing the intensity differences between pairs of pixels in a patch around the keypoint. These 

descriptors are used to detect and match similar key points across the images. Each de-

scriptor takes the rotation angle of a key point into consideration while identifying match-

ing key points. This process makes the ORB alignment process rotation invariant. Figure 

2 shows the rotation angle of the images in the orientation assignment section. Here, the 

ORB reads the images at multiple pyramid layers and then identifies the key points, cal-

culates the rotation angle and assigns them to the key points. In this part of the image, the 

key points are detected and shown by concentric circles (a circle for each pyramid layer). 

The direction is indicated by the line connecting these concentric circles.  
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Figure 2. Shows the steps involved in layer stacking the individual images from the Micasense 

Rededge-MX sensor using Oriented FAST and Rotated BRIEF (ORB) computer vision techniques. 

Once the ORB detects orientation, the BRIEF descriptors are generated for each key 

point detected by the FAST algorithm. The Random Sample Consensus (RANSAC) re-

moves the outlier keypoint that does not have proper matches across all the images. The 

RANSAC randomly picks some of the inliers to formulate a transformation that can best 

align the images together. The algorithm then checks how many of the unselected points 

agree with this transformation. This process is repeated several times to find the best con-

sensus between the transformation and the maximum inliers. Using this transformation 

matrix, the homography method warps the slave images to match the master image 

(rededge) so that all the images are aligned perfectly for layer stacking. Finally, the aligned 

images are layer-stacked to provide a 5-band TIFF image for further assessment. 

4. Results and Discussion 

The close-up images of the potted plants taken from the MX sensor were processed 

using the methodology mentioned above. A layer stack of these bands was generated us-

ing QGIS; the outcome of the process is shown in Figure 3. Figure 3 shows the layer-
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stacked true colour composite (TCC) image of the front and side view images before and 

after alignment. Before the alignment, the shift between the bands is visible in both the 

front and side view images. After the alignment, too, the top-view image shows a lot of 

shit between the bands.  The image taken from the nadir position has a uniform back-

ground with markers to identify the edge, which the feature detection algorithms can use 

to improve alignment. In addition, the image also has high-contrast edges that can make 

the alignment process more accurate. But in this case, the ORB failed to provide a proper 

alignment [29], and from Figure 3, the aligned top-view image looks very similar to the 

original layer-stacked image, except for some zones..  

 

Figure 3. Shows the comparison between the layer stack generated using the original bands without 

alignment and the results obtained after the bands are aligned using the ORB approach. Top-view 

layer stack without alignment (top-left), top-view layer stack after alignment (bottom-left), side-

view layer stack without alignment (top-right), and side-view layer stack after alignment (bottom-

right). 

Though most of the aligned images from the nadir view have lapses,  some features, 

like the reflectance panel, show near-perfect alignment. This indicates that the image went 

through the alignment process, features were detected, but the alignment failed to pro-

duce a perfectly aligned layer stack. One strong reason could be that the key points are 

mainly concentrated in and around the reflectance panel area of the top-view image. From 

Figure 2, the key points in the blue, green, red, and red-edge bands clearly show that most 

of the key points are situated near the panel area due to its high contrast edges. Since FAST 

detects only the edges and ORB only uses these key points for further processing [30], all 

the key features are concentrated only in a small zone. Further, RANSAC utilises these 

features to formulate the transformation matrix for aligning the images (see Figure 2, 

RANSAC key point matching). Since the algorithm failed to detect a large no of key points 

on the crop, the alignment process warped the images along the available key points, re-

sulting in a near-perfect reflectance panel layer stack, disregarding the rest of the image 

[31]. Thus, the lack of contrast between the crop and the background, along with having 

high contrast edges concentrated in a single zone, could have caused the ORB algorithm 

to fail in image alignment [32].  
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To improve the alignment further, we have reduced the key-point threshold to allow 

RANSAC to select more inliers for better alignment [33]. Figure 4 shows the aligned im-

ages after improving keypoint selection and distribution. From Figure 4, the top-left im-

age was the result of the ORB alignment after the key-point selection threshold was re-

duced. The reduction in the threshold value improved the number of keypoints available 

for the alignment process. Additionally, the key features near the label sheet (right side of 

the pot), on the pot edge markers, and the pot itself were also included for alignment. The 

inclusion of more key points, especially from diverse positions, has drastically enhanced 

the alignment of the images. The aligned image clearly shows that the panel, label sheet 

and most of the crop, along with the pot, have aligned, leaving some portions still dis-

torted. Mainly, the leaf edges that are not in the centre and spread across the image with 

several twists show significant variations in the alignment. The improvement in the align-

ment is clearly due to the increasing key points for feature matching and their distribution. 

To improve the alignment further, the RANSAC method was used to select only those key 

points based on their spatial distribution. The bottom-left image from Figure 4 shows the 

results after improving the key point selection by checking for distribution. From the fig-

ure, the change in the number of key points selected based on the positions was not sig-

nificant, which affected the alignment process. The bottom-left aligned image in Figure 4 

does not show any noteworthy change in the crop alignment from the last output. Thus, 

clearly showing that the most significant part of the feature-based image alignment is the 

detection of key points that are numerous and distributed adequately across the image 

[34]. To improve key point detection, the background and the subject must be in stark 

contrast. Further, the figures also show that the object must be at the centre of the frame 

with less spreading towards the corners of the image. The spread of the object was more 

across the image as the image was captured from the top. If the image was captured from 

the side view, then the plant may not spread across the image that well, and the image 

can be appropriately aligned. 

 

Figure 4. Shows the top-view image after alignment using more no of key-points (top-left) and after 

improving the distribution of key-points (bottom-left). The corresponding key-point matching be-

tween the green bands and the red-edge (reference) band can be observed in top-right and bottom-

right positions respectively. 

With these learning, the MX sensor was used to capture the side-view image of an 

indoor potted plant with diverse backgrounds and bright indoor lighting conditions.  

Figure 2 shows how the pot looks in different bands. The figure also shows the key points 

detected in each band. From the figure, the key points in the side view image are spread 
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across the image, with several of them being on the plant and the pot itself. The edges and 

high contrast features are spread across the side-view images, thus providing well-dis-

tributed features at prominent positions. The RANSAC matching also shows highly di-

verse matching lines connecting the well-distributed features, indicating how the high-

quality key points can influence the alignment process. The results of the alignment can 

be seen from the images displayed in Figure 3 (bottom-left). The figure shows the TCC of 

the side-view layer stacked image without alignment (top-right) and the layer stacked 

image after alignment (bottom-right). From the figure, the TCC of the unaligned image 

shows a significant shift between the bands. In contrast, the TCC of the aligned image 

show a perfect layer stack where the alignment process was able to align the bands to near 

perfection. This layer stack image can be used to perform an analysis of choice to extract 

crop health information. Figure 5 shows the normalised difference vegetation index 

(NDVI) image generated from the stacked image layer. The image is colour-coded from 

red to green, where red indicates very low NDVI and green indicate higher NDVI. The 

minimum and maximum values of NDVI for the plant are around 0.1 and 0.7 [35]. The 

leaf of the indoor plant has several pale green spots where the chlorophyll is very low, 

and some areas are still bright green where the chlorophyll content is high. The NDVI 

image clearly shows a difference between the zones with lower chlorophyll content and 

the areas with high chlorophyll content in the leaves [36]. Wherever the chlorophyll con-

tent is low, the NDVI values are low and vice versa [37]. Since the NDVI is showing all 

these variations accurately per the plant chlorophyll content, it clearly shows that the 

alignment and layer stacking of the image worked perfectly.  Thus, the MX sensor can be 

used effectively for assessing crop health from a very close distance, provided some pre-

cautions are taken before capturing the images. 

 

Figure 5. Shows the NDVI image generated from the side-view aligned layer stack image. 

Though this research was conducted with the Micasense RedEdge-MX sensor, care 

must be taken to explore what might occur if paired with alternative types of sensors for 

similar close-proximity imaging applications. Other multispectral sensors (such as the 

Parrot Sequoia and Sentera 6X) have a different set of spectral bands but, likewise, can be 

utilised for proximal imaging. In these instances, the alignment approach will need to be 

modified, as bands count, optics, and camera configurations affect parallax and registra-

tion performance [13,14]. Hyperspectral sensors, on the other hand, typically employ 

pushbroom or whiskbroom scanning, which yields a complete spectral datacube instead 

of several separate images. This obviates band-to-band alignment requirements, but poses 

other issues, such as motion artifact, illumination, and the requirement for accurate cali-

bration at acquisition. RGB cameras, while providing extremely high spatial resolution, 

do not capture key spectral bands (e.g., red-edge and NIR), and thus are not very effective 

in capturing early plant stresses [9,11]. Multispectral sensors, therefore, find a middle 
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ground between spectral richness, cost, and data volumes that can be handled [8,12,16]. 

An initial examination of sensor specifications indicates that proximal imaging is possible 

across platforms, although the processing pipeline would need to be adapted based on 

sensor design and acquisition geometry. For additional information, refer to Table 1, 

which compares various sensors and how the current approach can be applied to these 

sensors.  

Table 1. Comparison of imaging sensors, ranging from RGB to Hyperspectral, to evaluate the feasi-

bility of the current approach. 

Sensor 

Type 

Bands 

(Center 

Wave-

length ± 

FWHM) 

Spatial 

Resolution 

Data For-

mat 

Suitability 

for Proxi-

mal Imag-

ing 

Ad-

vantages 
Limitations 

RGB DSLR 

(generic) 

3 bands 

(Blue ~450 

nm, Green 

~550 nm, 

Red ~650 

nm) 

12–24 MP 
Single 

image 

Captures 

fine detail 

of leaves, 

but no 

spectral 

depth 

Very high 

spatial 

resolu-

tion; low 

cost; easy 

to deploy 

No NIR/Red-

edge; cannot 

detect early 

stress [9,11] 

Micasense 

RedEdge-

MX 

5 bands 

(Blue 475 

nm, Green 

560 nm, 

Red 668 

nm, Red-

edge 717 

nm, NIR 

840 nm) 

1280 × 960 

px 

5 sepa-

rate TIFF 

images 

Proven in 

UAV and 

proximal 

use; re-

quires 

band align-

ment 

Balanced 

cost vs. 

spectral 

info; 

strong 

vegeta-

tion indi-

ces 

Band separa-

tion → paral-

lax; 

ORB+RAN-

SAC align-

ment needed 

(this study) 

Parrot Se-

quoia+ 

4 bands 

(Green 550 

nm, Red 

660 nm, 

Red-edge 

735 nm, 

NIR 790 

nm) + RGB 

1280 × 960 

px (multi) + 

RGB cam-

era 

4 TIFFs + 

RGB 

JPEG 

Light-

weight; 

widely 

used 

Simpler 

(fewer 

bands); 

RGB + 

NIR indi-

ces possi-

ble 

Align-

ment/paral-

lax issues re-

main; limited 

bands [13,14] 

Sentera 6X 

Multispec-

tral 

6 bands 

(Blue 450 

nm, Green 

530 nm, 

Red 670 

nm, Red-

edge 710 

nm, NIR 

840 nm, 

Wide NIR 

940 nm) 

20 MP 

6 inde-

pendent 

images 

High spa-

tial detail + 

spectral 

range 

High res-

olution; 

broad 

crop 

stress 

sensitiv-

ity 

More de-

manding 

alignment 

across bands 

DJI P4 Mul-

tispectral 

Blue 450 ± 

16 nm; 

Green 560 ± 

16 nm; Red 

~2.08 MP 

per band; 

plus RGB 

sensor 

TIFFs 

(MS) + 

RGB 

JPEG 

Effective 

for UAV 

and proxi-

mal use; 

Compact; 

well-cali-

brated; 

NDVI/N

Lower reso-

lution per 

band; paral-

lax between 
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650 ± 16 

nm; Red-

edge 730 ± 

16 nm; NIR 

840 ± 26 nm 

limited de-

tail for very 

close im-

agery 

DRE 

ready 

sensors; 

alignment 

needed 

DJI Mavic 

3M Multi-

spectral 

Green 560 ± 

16 nm; Red 

650 ± 16 

nm; Red-

edge 730 ± 

16 nm; NIR 

860 ± 26 nm 

4 × 5 MP 

MS + 20 

MP RGB 

Separate 

MS im-

ages + 

RGB 

Good can-

didate for 

the current 

pipeline; 

better RGB 

helps tex-

ture/feature 

detection 

Built-in 

light sen-

sor; 

newer 

high-res 

RGB; 

portable 

Alignment 

still needed; 

per-band res-

olution lower 

than RGB; 

possible 

close-range 

misalign-

ment 

Headwall 

Nano-Hy-

perspec 

~270 bands 

(400–1000 

nm; 2–3 nm 

bandwidth) 

Pushbroom

, ~640 spa-

tial pixels 

Hyper-

spectral 

datacube 

Suitable; 

requires 

motion 

control 

Very high 

spectral 

detail; no 

parallax 

(single 

slit) 

High data 

volume; cali-

bration and 

motion cor-

rection 

needed; 

costly [10,19–

21,28] 

Headwall 

Co-Aligned 

HP™ 

(VNIR–

SWIR) 

VNIR: 400–

1000 nm 

(340 bands, 

6 nm 

FWHM); 

SWIR: 900–

2500 nm 

(267 bands, 

6 nm 

FWHM) 

VNIR: 1020 

px; SWIR: 

640 px 

Co-

aligned 

hyper-

spectral 

datacube 

Designed 

for 

UAV/re-

mote sens-

ing; less 

suited to 

handheld 

close-ups 

Co-

aligned 

optics 

minimise 

parallax; 

full 

VNIR–

SWIR 

coverage 

Heavy (~4 

kg); high 

data volume; 

motion cor-

rection & cal-

ibration re-

quired; costly 

[10,19–21,28] 

5. Conclusions 

The study shows that UAV-mounted multispectral sensors can be effectively used 

for closer-range crop imaging and health assessment even when they have multiple cam-

era systems in the rig. The work demonstrated how computer vision techniques can be 

used to process close-up MX images of potted plants from top and side-view angles taken 

from a 1.5-m distance while discussing the challenges encountered during the process. 

Robust computer vision techniques like ORB feature detection and RANSAC-based align-

ment were used to answer these challenges to generate a perfect layer-stacked image that 

can be used for further image analysis. While utilising these alignment techniques, it is 

essential to make sure that the crop has a fine contrast in all the bands against the back-

ground, which can be either homogeneous or non-homogeneous. Further, the image 

should have some markers with sharp edges and proper contrast. These steps will ensure 

that the key points are numerous and well distributed across the image, including on the 

crop itself. Further, the crop must always be in the centre of the FOV, which will allow 

better alignment. By ensuring these steps are followed, the MX sensors can be effectively 

used to study crops using close-up MX images.   
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