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Abstract

UAV-mounted multispectral sensors are widely used to study crop health. Utilising the
same cameras to capture close-up images of crops can significantly improve crop health
evaluations through multispectral technology. Unlike RGB cameras that only detect visi-
ble light, these sensors can identify additional spectral bands in the red-edge and near-
infrared (NIR) ranges. This enables early detection of diseases, pests, and deficiencies
through the calculation of various spectral indices. In this work, the ability to use UAV-
multispectral sensors for close-proximity imaging of crops was studied. Images of plants
were taken with a Micasense Rededge-MX from top and side views at a distance of 1 m.
The camera has five sensors that independently capture blue, green, red, red-edge, and
NIR light. The slight misalignment of these sensors results in a shift in the swath. This
shift needs to be corrected to create a proper layer stack that could allow further pro-
cessing. This research utilised the Oriented FAST and Rotated BRIEF (ORB) method to
detect features in each image. Random sample consensus (RANSAC) was used for feature
matching to find similar features in the slave images compared to the master image (indi-
cated by the green band). Utilising homography to warp the slave images ensures their
perfect alignment with the master image. After alignment, the images were stacked, and
the alignment accuracy was visually checked using true colour composites. The side-view
images of the plants were perfectly aligned, while the top-view images showed errors,
particularly in the pixels far from the centre. This study demonstrates that UAV-mounted
multispectral sensors can capture images of plants effectively, provided the plant is cen-
tred in the frame and occupies a smaller area within the image.

Keywords: UAV; multispectral sensor; proximal imaging; crop health monitoring

1. Introduction

UAV-remote sensing has revolutionised crop health monitoring by providing remote
sensing images on demand for calculating crop health metrics [1-7]. The remote sensing
images collected from a variety of sensors have made UAV-based remote sensing a main-
stay in precision agriculture [8]. Images from RGB sensors provide very high-resolution
images [9]. Data from hyperspectral sensors is highly valuable as it provides detailed
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spectral information about the crops [10]. However, RGB sensors offer limited spectral
information, whereas hyperspectral sensors, while more comprehensive, are often pro-
hibitively expensive [11]. Multispectral sensors offer a good balance between RGB and
hyperspectral sensors, providing essential spectral depth at a lower cost [12]. UAVs
equipped with multispectral imaging sensors are commonly used to monitor crop growth
in fields because they provide advantages over other sensors [13]. The use of these sensors
has yielded outstanding results in the analysis of field crops from a UAV [14]. But the
design limitations have restricted its use for capturing close-up images from low-flying
UAVs or for crops growing in pots [15].

Proximal imaging with multispectral sensors can provide valuable information about
pests, diseases, and other stresses affecting crops by utilising visual and spectral data [16].
While water and nutrient stress in crops can be detected using vegetation indices and
other methods that analyse spectral signatures [17]. Crops' pests and diseases can only be
identified through close-range remote sensing images that capture leaf symptoms [18].
These limitations have led the agriculture community to invest in various sensors for dif-
ferent needs, increasing the cost of crop health monitoring and precision agriculture [19].
Removing the limitations of current multispectral sensors could enable their use with
UAVs and for close-range imaging, benefiting the entire community [20].

Currently, multispectral sensors feature a rig with multiple cameras, each sensitive
to specific parts of the electromagnetic spectrum (EMR). Each camera is placed separately
to avoid obstructing the field of view of others. This placement creates a shift in FOV and
causes variations in the images captured by the cameras. For example, for the Micasense
RedEdge-MX (MX) five-band sensor, five distinct images will be captured by each camera
for every individual instance. All the images will have a parallax shift due to the position
of the cameras [21]. This change in images complicates the process of stacking individual
layers, making it exceedingly challenging [22]. OEMs recommend flying UAVs at alti-
tudes above 15m to ensure that most of the area of interest is at the centre of the images,
where shifting errors are typically lower. At close distances, the parallax shift greatly im-
pacts images because the object of interest takes up most of the frame, making the align-
ment challenging [15]. Addressing the challenges arising due to the sensor's distance from
objects can enhance its usability in agriculture [23].

Computer vision methods are often favoured for aligning images with parallax errors
or disorientations compared to complex deep learning models and simple GPS-based
alignment procedures [24]. Computer vision-based feature matching approaches are data-
agnostic, lightweight, and offer strong generalisation across diverse scenes and spectral
conditions [25]. The ORB (Oriented FAST and Rotated BRIEF) algorithm is a computer
vision method known for its efficiency, accuracy, and robustness. ORB combines the FAST
corner detection algorithm with orientation estimation and BRIEF descriptor extraction,
making it invariant to scale and rotation. Its use of binary descriptors and Hamming dis-
tance matching enables quick feature comparison while retaining strong discriminative
power, even in distorted views [26]. Further, ORB is fully open-source and free of patents,
which makes it perfect for scalable research and real-time applications in agriculture and
remote sensing [26]. Thus, ORB is a preferred option in the computer vision field for mul-
timodal image registration tasks due to its robustness across different image resolutions,
lightweight computational requirements, and strong performance in low-texture scenes,
such as vegetation [26]. The Random Sample Consensus (RANSAC) algorithm, often used
with ORB, helps remove outliers from feature matches in computer vision [27]. It works
by iteratively selecting random subsets and estimating the best-fitting transformation
model. This work uses the RANSAC method to improve the matching of features detected
in different spectral bands by eliminating mismatches from parallax errors [27]. After find-
ing reliable matches, a homography matrix is created to align each slave image with the
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reference band geometrically [28]. This transformation preserves spatial consistency
across bands, enabling precise layer stacking for further multispectral analysis [28]. The
study aims to enhance the use of current UAV-mounted sensors for close-range applica-
tions, lessen reliance on specialised equipment, and provide more accessible and afforda-
ble crop monitoring solutions in various agricultural situations. The main goal is to create
and test a reliable image alignment pipeline using the ORB feature detection and matching
technique, along with RANSAC for homography estimation. This approach aims to align
individual spectral bands captured at low altitudes to create high-quality stacked multi-
spectral composites for plant health analysis. Using the pipeline, this study evaluates the
use of the UAV-mounted MX sensor for close-range crop imaging to address parallax-
induced misalignments in multispectral imagery.

2. Study Area

ICAR - Indian Agricultural Research Institute (IARI) is a leading agricultural research
centre located in New Delhi, India. It has several essential facilities for research on various
agricultural topics. One such facility is the Big Data Analytics Lab (BDL Lab) (28.639541,
77.162105). The BDL lab uses remote sensing data from ground sensors, UAVs, and satel-
lites to evaluate crop health in different ways. The study was conducted at the Big Data
Analytics lab, where the MX sensor was used to assess the health of potted plants. Crops
in the pots were subjected to multiple treatments to see their reaction to nutrient and water
stress treatments. The MX sensor was applied to assess the impact of these treatments as
a remote sensing sensor. The problem of parallax error was first observed during the ini-
tial image alignment and layer stacking process. The methodology applied here will ad-
dress the image alignment issues so that the health of these potted plants can be assessed
from the MX images.

Big Data Analytics lab, NRL building,
ICAR-IARI, PUSA campus, New Delhi.
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Figure 1. Shows the location of the BDL lab.

3. Methodology
3.1. Experiment Setup

The MX sensor was used to capture an image of the subject (potted plants) from either
the top or side view. For top-view photos, the sensor was placed directly above the plant
in the nadir position at a distance of 1.5 m from the plant. For the side view, the camera
was placed on a tripod at 1.5 m from the plant. It was ensured that the object was in the
centre of the frame. The MX camera was connected to a mobile device using the wifi gen-
erated from the sensors. After the sensor is connected, we can access the control panel for
the sensor in any web browser by entering the IP address 192.168.10.254 into the search
bar of the browser. From the control panel, all the functions of Micasense, like camera
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triggering and live image feed visualisation, can be controlled. Once the sensor is ready
with all the required settings, images of the crops were captured, and the raw images were
used for further analysis. For the top view, the pot is placed on a black uniform back-
ground with markers indicating the edge of the crop. Further, the image also shows a
calibration panel placed on the flat ground, along with a label panel with the name of the
specimen. This image was taken outdoors under natural sunlight. The side-view image
was captured indoors under artificial lights. A potted indoor plant was used as a subject,
and we did not use any background to see how the alignment works when images have
diverse backgrounds. Since computer vision-based ORB methods are being used for im-
age alignment, these diverse backgrounds and lighting conditions, along with plants, will
reveal the robustness of the techniques.

3.2. Image Layer Staking

Figure 2 shows the process followed while layer stacking the proximal MX images.
Figure 2 shows two sets of images; the first image is taken from the nadir position when
the camera is positioned directly above the crop. A potted wheat crop in its early growth
stage was used as a subject for this image. There are five images, one for each band. The
brightest of the images is the NIR image, followed by rededge and green, due to the crop’s
high reflectance in these bands. The red and blue images are dark, suggesting high ab-
sorbance in these bands. Similarly, the second set of images shows a potted indoor plant
captured from the MX sensor from a side view. These images are promptly labelled and
can be visualised in Figure 2.

The images were processed in a Python 3.12 environment. The ORB technique was
accessed from the OpenCV library. OpenCV was used for image processing, feature de-
tection, matching, warping and drawing of the images. In addition, the numpy, rasterio,
and matplotlib.pyplot libraries were used for numerical operations, generating a multi-
spectral layer stack, and displaying images and matches, respectively. The MX provide
individual images in TIFF format; these images are read using the rasterio library. The
OpenCV library was used to set up ORB flow for the images. In the first step, the ORB
uses the Features from the Accelerated Segment Test (FAST) method, a corner detection
algorithm, to quickly detect keypoints in the images. The FAST approach is particularly
known for its speed and is generally used for real-time applications like object tracking or
image alignment. The FAST approach looks at each pixel and 16 pixels surrounding it (a
Bresenham circle). It checks if a certain number of contiguous pixels in that circle are all
significantly brighter or darker than the centre pixel. If there is a significant change, the
centre pixel is marked as an edge pixel. Figure 2 shows the keypoints detected in each
image from the corresponding views. Each edge pixel is indicated by a small circle drawn
around it by the FAST detection algorithm.

FAST detects key points, but does not provide orientation to the key points. Orienta-
tion is a really important feature that tells the dominant direction and rotation angle of a
key point. While this is happening, the ORB also uses the Binary Robust Independent El-
ementary (BRIEF) descriptor to provide a unique ID to individual key points by compar-
ing the intensity differences between pairs of pixels in a patch around the keypoint. These
descriptors are used to detect and match similar key points across the images. Each de-
scriptor takes the rotation angle of a key point into consideration while identifying match-
ing key points. This process makes the ORB alignment process rotation invariant. Figure
2 shows the rotation angle of the images in the orientation assignment section. Here, the
ORB reads the images at multiple pyramid layers and then identifies the key points, cal-
culates the rotation angle and assigns them to the key points. In this part of the image, the
key points are detected and shown by concentric circles (a circle for each pyramid layer).
The direction is indicated by the line connecting these concentric circles.
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Figure 2. Shows the steps involved in layer stacking the individual images from the Micasense
Rededge-MX sensor using Oriented FAST and Rotated BRIEF (ORB) computer vision techniques.

Once the ORB detects orientation, the BRIEF descriptors are generated for each key
point detected by the FAST algorithm. The Random Sample Consensus (RANSAC) re-
moves the outlier keypoint that does not have proper matches across all the images. The
RANSAC randomly picks some of the inliers to formulate a transformation that can best
align the images together. The algorithm then checks how many of the unselected points
agree with this transformation. This process is repeated several times to find the best con-
sensus between the transformation and the maximum inliers. Using this transformation
matrix, the homography method warps the slave images to match the master image
(rededge) so that all the images are aligned perfectly for layer stacking. Finally, the aligned
images are layer-stacked to provide a 5-band TIFF image for further assessment.

4. Results and Discussion

The close-up images of the potted plants taken from the MX sensor were processed
using the methodology mentioned above. A layer stack of these bands was generated us-
ing QGIS; the outcome of the process is shown in Figure 3. Figure 3 shows the layer-
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stacked true colour composite (TCC) image of the front and side view images before and
after alignment. Before the alignment, the shift between the bands is visible in both the
front and side view images. After the alignment, too, the top-view image shows a lot of
shit between the bands. The image taken from the nadir position has a uniform back-
ground with markers to identify the edge, which the feature detection algorithms can use
to improve alignment. In addition, the image also has high-contrast edges that can make
the alignment process more accurate. But in this case, the ORB failed to provide a proper
alignment [29], and from Figure 3, the aligned top-view image looks very similar to the
original layer-stacked image, except for some zones..
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Figure 3. Shows the comparison between the layer stack generated using the original bands without
alignment and the results obtained after the bands are aligned using the ORB approach. Top-view
layer stack without alignment (top-left), top-view layer stack after alignment (bottom-left), side-
view layer stack without alignment (top-right), and side-view layer stack after alignment (bottom-
right).

Though most of the aligned images from the nadir view have lapses, some features,
like the reflectance panel, show near-perfect alignment. This indicates that the image went
through the alignment process, features were detected, but the alignment failed to pro-
duce a perfectly aligned layer stack. One strong reason could be that the key points are
mainly concentrated in and around the reflectance panel area of the top-view image. From
Figure 2, the key points in the blue, green, red, and red-edge bands clearly show that most
of the key points are situated near the panel area due to its high contrast edges. Since FAST
detects only the edges and ORB only uses these key points for further processing [30], all
the key features are concentrated only in a small zone. Further, RANSAC utilises these
features to formulate the transformation matrix for aligning the images (see Figure 2,
RANSAC key point matching). Since the algorithm failed to detect a large no of key points
on the crop, the alignment process warped the images along the available key points, re-
sulting in a near-perfect reflectance panel layer stack, disregarding the rest of the image
[31]. Thus, the lack of contrast between the crop and the background, along with having
high contrast edges concentrated in a single zone, could have caused the ORB algorithm
to fail in image alignment [32].
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To improve the alignment further, we have reduced the key-point threshold to allow
RANSALC to select more inliers for better alignment [33]. Figure 4 shows the aligned im-
ages after improving keypoint selection and distribution. From Figure 4, the top-left im-
age was the result of the ORB alignment after the key-point selection threshold was re-
duced. The reduction in the threshold value improved the number of keypoints available
for the alignment process. Additionally, the key features near the label sheet (right side of
the pot), on the pot edge markers, and the pot itself were also included for alignment. The
inclusion of more key points, especially from diverse positions, has drastically enhanced
the alignment of the images. The aligned image clearly shows that the panel, label sheet
and most of the crop, along with the pot, have aligned, leaving some portions still dis-
torted. Mainly, the leaf edges that are not in the centre and spread across the image with
several twists show significant variations in the alignment. The improvement in the align-
ment is clearly due to the increasing key points for feature matching and their distribution.
To improve the alignment further, the RANSAC method was used to select only those key
points based on their spatial distribution. The bottom-left image from Figure 4 shows the
results after improving the key point selection by checking for distribution. From the fig-
ure, the change in the number of key points selected based on the positions was not sig-
nificant, which affected the alignment process. The bottom-left aligned image in Figure 4
does not show any noteworthy change in the crop alignment from the last output. Thus,
clearly showing that the most significant part of the feature-based image alignment is the
detection of key points that are numerous and distributed adequately across the image
[34]. To improve key point detection, the background and the subject must be in stark
contrast. Further, the figures also show that the object must be at the centre of the frame
with less spreading towards the corners of the image. The spread of the object was more
across the image as the image was captured from the top. If the image was captured from
the side view, then the plant may not spread across the image that well, and the image
can be appropriately aligned.
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Figure 4. Shows the top-view image after alignment using more no of key-points (top-left) and after
improving the distribution of key-points (bottom-left). The corresponding key-point matching be-
tween the green bands and the red-edge (reference) band can be observed in top-right and bottom-

right positions respectively.

With these learning, the MX sensor was used to capture the side-view image of an
indoor potted plant with diverse backgrounds and bright indoor lighting conditions.
Figure 2 shows how the pot looks in different bands. The figure also shows the key points
detected in each band. From the figure, the key points in the side view image are spread
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across the image, with several of them being on the plant and the pot itself. The edges and
high contrast features are spread across the side-view images, thus providing well-dis-
tributed features at prominent positions. The RANSAC matching also shows highly di-
verse matching lines connecting the well-distributed features, indicating how the high-
quality key points can influence the alignment process. The results of the alignment can
be seen from the images displayed in Figure 3 (bottom-left). The figure shows the TCC of
the side-view layer stacked image without alignment (top-right) and the layer stacked
image after alignment (bottom-right). From the figure, the TCC of the unaligned image
shows a significant shift between the bands. In contrast, the TCC of the aligned image
show a perfect layer stack where the alignment process was able to align the bands to near
perfection. This layer stack image can be used to perform an analysis of choice to extract
crop health information. Figure 5 shows the normalised difference vegetation index
(NDVI) image generated from the stacked image layer. The image is colour-coded from
red to green, where red indicates very low NDVI and green indicate higher NDVI. The
minimum and maximum values of NDVI for the plant are around 0.1 and 0.7 [35]. The
leaf of the indoor plant has several pale green spots where the chlorophyll is very low,
and some areas are still bright green where the chlorophyll content is high. The NDVI
image clearly shows a difference between the zones with lower chlorophyll content and
the areas with high chlorophyll content in the leaves [36]. Wherever the chlorophyll con-
tent is low, the NDVI values are low and vice versa [37]. Since the NDVI is showing all
these variations accurately per the plant chlorophyll content, it clearly shows that the
alignment and layer stacking of the image worked perfectly. Thus, the MX sensor can be
used effectively for assessing crop health from a very close distance, provided some pre-
cautions are taken before capturing the images.

Figure 5. Shows the NDVI image generated from the side-view aligned layer stack image.

Though this research was conducted with the Micasense RedEdge-MX sensor, care
must be taken to explore what might occur if paired with alternative types of sensors for
similar close-proximity imaging applications. Other multispectral sensors (such as the
Parrot Sequoia and Sentera 6X) have a different set of spectral bands but, likewise, can be
utilised for proximal imaging. In these instances, the alignment approach will need to be
modified, as bands count, optics, and camera configurations affect parallax and registra-
tion performance [13,14]. Hyperspectral sensors, on the other hand, typically employ
pushbroom or whiskbroom scanning, which yields a complete spectral datacube instead
of several separate images. This obviates band-to-band alignment requirements, but poses
other issues, such as motion artifact, illumination, and the requirement for accurate cali-
bration at acquisition. RGB cameras, while providing extremely high spatial resolution,
do not capture key spectral bands (e.g., red-edge and NIR), and thus are not very effective
in capturing early plant stresses [9,11]. Multispectral sensors, therefore, find a middle
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ground between spectral richness, cost, and data volumes that can be handled [8,12,16].
An initial examination of sensor specifications indicates that proximal imaging is possible
across platforms, although the processing pipeline would need to be adapted based on
sensor design and acquisition geometry. For additional information, refer to Table 1,
which compares various sensors and how the current approach can be applied to these
Sensors.

Table 1. Comparison of imaging sensors, ranging from RGB to Hyperspectral, to evaluate the feasi-

bility of the current approach.

B
( CZ’;f:r Suitability
Sensor Spatial Data For-  for Proxi- Ad- ey
Type Wave- Resolution mat mal Imag-  vantages Limitations
yp length * . & 8
FWHM) ng
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(Blue ~450 fine detail spatial ~ No NIR/Red-
RGB DSLR  nm, Green Single of leaves, resolu- edge; cannot
. 12-24 MP . .
(generic) ~550 nm, image but no tion; low  detect early
Red ~650 spectral cost; easy stress [9,11]
nm) depth to deploy
5 bands
(Blue 475 Proven in B:;ztns(sed Band separa-
nm, Green UAYV and : tion — paral-
. . spectral
Micasense 560 nm, 1280 x 960 5 sepa- proximal info: lax;
RedEdge- Red 668 N rate TIFF use; re- tr n, ORB+RAN-
MX nm, Red- P images quires \?e th SAC align-
edge 717 band align- . g. . ment needed
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NIR 790 510 ' '
nm) + RGB ¢
6 bands
(Blue 450
nm, Green High res-
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. spectral alignment
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nm, NIR 8¢ sensitiv- cross s
840 nm, ity
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DJI P4 Mul- 16 nm; per band; (MS) + for UAV well-cali- lution per
tispectral  Green 560+  plus RGB RGB and proxi- brated; band; paral-

16 nm; Red sensor JPEG mal use; NDVI/N lax between
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Alignment
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HpP™ px; SWIR: hyper- . parallax; .
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5. Conclusions

The study shows that UAV-mounted multispectral sensors can be effectively used
for closer-range crop imaging and health assessment even when they have multiple cam-
era systems in the rig. The work demonstrated how computer vision techniques can be
used to process close-up MX images of potted plants from top and side-view angles taken
from a 1.5-m distance while discussing the challenges encountered during the process.
Robust computer vision techniques like ORB feature detection and RANSAC-based align-
ment were used to answer these challenges to generate a perfect layer-stacked image that
can be used for further image analysis. While utilising these alignment techniques, it is
essential to make sure that the crop has a fine contrast in all the bands against the back-
ground, which can be either homogeneous or non-homogeneous. Further, the image
should have some markers with sharp edges and proper contrast. These steps will ensure
that the key points are numerous and well distributed across the image, including on the
crop itself. Further, the crop must always be in the centre of the FOV, which will allow
better alignment. By ensuring these steps are followed, the MX sensors can be effectively
used to study crops using close-up MX images.
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