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Abstract

Infrared (IR) proximity sensors measure distance using either time-of-flight (ToF) or re-
flection intensity methods. While ToF offers higher precision, it requires costly, special-
ized components. Reflection based sensors use simpler circuits, enabling lower-cost de-
signs. This study presents a multi-emitter reflection-intensity IR sensor as an economical
alternative to near field object positioning. Six IR LEDs, sequentially driven, surround a
central photodiode that captures backscattered signals. A machine-learning pipeline esti-
mates object coordinates, cross section and height. Tested on 20 objects and 13,750 labeled
data, the system achieved <1 cm mean positioning error, competitive to multi-zone ToF
accuracy with reduced cost.

Keywords: infrared sensor; infrared proximity sensing; active infrared array; near-field
object positioning; multi-emitter IR sensor; IR reflection sensing

1. Introduction
1.1. Background on Infrared Proximity Sensing

Infrared (IR) proximity sensors are used commonly in industry and consumer de-
vices due to their reliability, low cost, low power consumption, and compact form [1].
Applications like presence detection, robotic automation, gesture control and safety sys-
tems are typically done with IR proximity sensors [2,3].

In practical applications, two major form of IR proximity sensors are used: Time of
Flight (ToF) and reflection intensity type sensors [4,5].

1.1.1. Time of Flight IR Sensors

ToF sensors determine distance by measuring the time required for emitted infrared
light to travel from the emitter LED to the receiver photodiode and back after reflecting
from a target [6]. They can achieve more precision and allow detecting objects at greater
distances; it demands high-speed timing and specialized and costlier integrated compo-
nents. They are less affected by the target’s surface reflectivity, as the measurement is
based on the light’s travel time rather than the intensity of the reflected signal. They also
employ SPAD (Single-Photon Avalanche Diode) pixel arrays in combination with time-
to-digital converters (TDCs) capable of resolving extremely narrow optical pulses [6-8].

The basic principle is like sonar sensors, which measures the travel time of sound
waves. However, measuring the time of flight of photons is significantly more challenging
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due to the much higher speed of light compared to sound. For this reason, such sensors
incorporate dedicated integrated circuits to handle the precise timing measurements.
Their manufacturing is complex and requires high-speed electronics, often implemented
as custom ASICs [8,9].

Multizone ToF sensors operate on the same principle, but instead of a single meas-
urement axis, they change the emitter’s laser or employ multiple emitters to capture dis-
tance information across an array, forming image-like matrices with resolutions of up to
8x8 [10]. Such sensors are frequently used for near-field object detection in various appli-
cations [11,12].

1.1.2. Reflection Intensity Type Active IR Sensors

Reflection intensity type proximity sensors use one emitter IR LED and one receiver
IR diode corresponding to them, similar to ToF [13,14]. However, instead of measuring
the distance with time of flight, they measure the amplitude of reflected light, related to
object distance and reflectivity. For this reason, it is not easy to determine the distance of
the target with unknown reflectivity or color [15]. Also, reflection is easily affected by ob-
ject shape, environmental conditions, etc. [16]. Due to these limitations, such sensors often
employ IR emitter LEDs with a wider viewing angle and forward current to increase the
amount of reflected light received from targets under varying conditions. But this type of
sensor is advantageous because they do not need to perform complex timing calculations
[17]. Only a simple current-to-voltage circuit and an analog-to-digital converter are
enough for digitizing the reflection value. The simplicity of reflection intensity IR sensors
enables the production of more cost-effective sensors [18].

Single-LED reflection sensors in these systems produce a single-axis backscatter
value. Since only a single value is read, it is sensitive to color, reflectivity, surface slope,
and environmental variables. Interpretation of the read value cannot account for the de-
crease in reflection intensity resulting from these parameters and distance data [17].

1.2. Positioning with Infrared Proximity Sensors,

In the domain of positioning with IR proximity sensors, multi-zone ToF sensors are
often employed in various research studies. A 2019 study by A. Adamides et al. demon-
strated the use of a multizone ToF sensor ring for human detection and positioning in
industrial environments [19]. Another study in 2024 by A. Fasolino et al. utilized data
from an 8x8 multi-zone ToF IR sensor to perform classification using a convolutional neu-
ral network (CNN), achieving an accuracy exceeding 92% [20]. Single-zone ToF sensors
were also used in a 2019 study by U. Himmelsbach et al. for object detection and self-
localization in robotic arms [21].

Low-cost reflection-intensity active IR sensors are predominantly used for distance
measurements rather than precise positioning. In a 1999 study, P. M. Novotny et al. em-
ployed a reflection-based IR sensor implementing the Phong illumination model to per-
form distance estimation [22]. Furthermore, by arranging reflection-based active IR sen-
sors in an array configuration and applying echo analysis, object identification can also be
achieved [23,24]. In some studies, ultrasonic sensors have been integrated to enhance the
accuracy of such systems, enabling distance tracking solutions based on reflection type IR
proximity sensors that are less affected by variations in target reflectivity and color [25].

Furthermore, near-field object positioning is closely related to visual perception and
can therefore be processed using deep learning and machine learning (ML) methods like
CNN to extract deeper features beyond those attainable through classical approaches [26].

Numerous studies have employed higher-cost multi-zone ToF systems in combina-
tion with histogram analysis [27,28]. However, despite these advancements, there is no
reflection-based IR sensor model specifically developed for use in consumer electronics.
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This motivated the development of an extremely low-cost, machine learning assisted ob-
ject positioning system. The proposed design employs a circular-array, multi-emitter sen-
sor system that capable of performing object detection and positioning within defined
limits.

In the literature, low-cost reflection-based IR sensors are mostly used for distance
measurement,[13,14] while multi-region ToF arrays have been used for positioning.[19-
21]. This study aims to perform positioning with a single receiver and multiple transmitter
architecture and a learned multi-channel pattern.

2. Materials and Methods

The use of a single LED in the reflection-intensity type is sensitive to the target reflec-
tivity and surface orientation of the measurement. To prevent this dependency, six IR
LEDs were placed as receivers in a circular arrangement with a 25 mm radius from the
center. The receiver LED was held fixed at the center, allowing different illumination an-
gles to be sampled. While measurements were taken from the receiver, the transmitter
LEDs were triggered separately and sequentially.

Time-shared triggering limited inter-channel interference. The setup captures six-
channel data instead of absolute amplitude. The photodiode output is conditioned by a
transimpedance amplifier, gain stage, and low-pass RC filter. The signal is fed to the ADC.
This chain increases repeatability and noise immunity.

2.1. Infrared Emitter and Receiver Photodiode

In the sensor system to be developed, a central IR receiver diode is surrounded by
six emitter LEDs arranged in a circular pattern at an equal distance of 25 mm from the
center. The layout is shown in Figure 1.

As the emitter LED, the TSAL6200 (Vishay Semiconductors, US) was selected, which
operates at high power and emits at a peak wavelength of 940 nm (Ap = 940 nm) [31]. It
has a viewing angle of 34° (¢ = #17°). Due to its good matching with silicon photodiodes,
it is suitable for such emitter to receiver applications [29,30].

For the IR photodiode, the SFH 213 FA silicon PIN photodiode (OSRAM Opto Semi-
conductors, DE) was selected. It has a spectral sensitivity range of 750-1100 nm, with a
peak sensitivity at approximately 900 nm [33]. The device features a half-angle (¢) of 10°,
corresponding to a total viewing angle of 20°. The photocurrent is 272 uA, with a typical
value of 90 pnA [32]. For these reasons, it can be coupled with the selected IR LED and used
together.

Receiver Emitter
Diode 25mm  LED
—

Rexceiver
Diode LED¥

|

(b) (©

Figure 1. Placement of emitter LEDs and receiver photodiode: (a) View of electronic printed board

circuit (PCB) layout, (b) Bottom view diagram; (c¢) Horizontal view diagram.
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2.2. IR Emitter Driver

In the hardware implementation, each LED is driven by an N-channel MOSFET con-
trolled by an independent pin. The PJA3441 (PANJIT Inc., TW) was selected due to its low
cost and ability to handle currents up to 3.1 A. A total of six MOSFETs were used, one for
each emitter LED. Each emitter LED was connected in series with a 100 (2 SMD resistor,
resulting in a current consumption of approximately 50 mA at a 5 V supply [34].

The active circular IR LED array is driven sequentially, with each LED triggered in-
dividually and the corresponding receiver readings recorded separately. To achieve this,
an ESP32-WROOM-32D microcontroller unit (MCU) (Espressif Systems, CN) with a 32-
bit architecture was employed. Using an internal timer within the MCU, each LED is trig-
gered rapidly in sequence. The trigger duration for each LED is 35 us, followed by a 50
ms interval between triggers. Two consecutive measurements are taken with the same
LED before proceeding to the next one. In total, 100 ms is allocated to each LED, and the
complete cycle repeats every 600 ms.

2.3. IR Receiver Circuit

To enable analog measurements from the IR photodiode used as the receiver, a tran-
simpedance amplifier (TIA), a non-inverting gain amplifier, and a subsequent RC filter
were employed [33]. The OPA380 (Texas Instruments, USA), precision opamp selected for
both TIA and gain stages. The selected op-amp is low-noise op-amp for its high transim-
pedance gain bandwidth (90 MHz), low input bias current (0.05 pA), and low input volt-
age noise density (5.5 nV/Hz), making it suited for photodiode signal conditioning [33].
The diagram of the circuit can be seen in Figure 2.

100 kG
1
> s

100 nF

10 k0 !
=

Figure 2. IR photodiode receiver circuit with TIA (left), non-inverting gain stage, and RC low-pass

Y

filter for noise reduction.

In the TIA stage, the 100 k() feedback resistor sets the transimpedance gain, convert-
ing the photodiode’s current output into a voltage. The 47pF capacitor in parallel with this
resistor limits the bandwidth to suppress high-frequency noise and maintain stability, es-
pecially with the photodiode’s junction capacitance [35,36].

In the non-inverting amplifier stage, the gain is 10; determined by Equation (1). This
stage boosts the TIA’s output to a voltage level suitable for the ADC input of the micro-
controller. The RC low-pass filter consists of a 1 kQ resistor and a 100 nF capacitor, provid-
ing a cutoff frequency of 1.6kHz, that can be found by Equation (2) [33]:

90k

C=1+Torn "

10 1)

fe ~ 1.6 kHz 2)

~ 2nRC
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2.4. IR Receiver Value Acquisition

The IR signal is finally sampled through the microcontroller using an integrated an-
alog-to-digital converter (ADC) module. Measurements are acquired in one-shot ADC
mode with 12-bit resolution and 11 dB attenuation [37]. Each reading is stored in a buffer
and indexed according to the sequence of the six emitter LEDs. This approach allows sig-
nals from six different emitters to be captured through the analog output of a single re-
ceiver circuit within each measurement cycle. The buffered data is processed through a
software-based IIR filter before being transferred to the computer. A Python script with a
serial port reader stores the data into a comma-separated values (CSV) table file. Using
the labeling tools provided in the program interface, the data is manually annotated and
saved.

2.5. Dataset Preparation

The system is designed to detect cylindrical objects in proximity, with the sensor
mounted above the targets. For this purpose, 20 different cylindrical objects were pre-
pared. Each cylinder has a cardboard inner structure and is wrapped with the same color
paper tape to standardize reflective properties. Three of the objects used in data recording
are shown as examples in Figure 3.

Figure 3. Sample target objects used for dataset generation, from left to right: heights of 5 cm, 7 cm,

and 9 cm; cross-sectional areas of 20 cm?, 20 cm?, and 40 cm?, respectively.

The 20 object classes were defined as follows:

e Cross-sectional area: Two classes of target objects were used, with cross sections of
20 cm? and 40 cm?. For each height class, two cross-section examples were included.

e  Height: Ten classes were created for heights ranging from 5 cm to 15 cm, with incre-
ments of 1 cm.

Each of the 20 object classes was positioned individually on metric grid paper placed
beneath the sensor, ensuring that only one object was present for each measurement. The
origin (0,0) of the metric grid corresponds to the vertical projection of the IR receiver pho-
todiode. The grid area covers a total of 12 cm x 12 cm, providing a coordinate range from
(=6, —6) to (+6, +6).

The sensor array was mounted horizontally, with the central IR photodiode aligned
to the center of the coordinate plane, at a height of 22 cm above the metric paper. For
measurements, the sensor array was connected via cables to an ESP32-WROOM-32D mi-
crocontroller board, which in turn was connected to a computer via a USB cable.

For data acquisition, each of the 20 object classes was placed at grid points spaced at
0.5 cm intervals, covering all positions from (—6,-6) to (+6,+6), resulting in a total of 625
measurement points per object. (Figure 4.) The figure illustrates that the response from a
single transmitter exhibits direction-dependent and narrow distribution. This manual po-
sitioning process was monitored using a Python based computer interface, which rec-
orded the measurements in CSV format. To accelerate the manual measurement process,
data augmentation techniques such as symmetrization and Gaussian blur were applied.
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The object height was entered manually into the interface, while the coordinate values
were automatically assigned by the program.

jem)

Figure 4. The map shows the IR reflective intensity values of an object positioned at varying coor-
dinates when only a single emitter LED is active. Rx denotes the central receiver photodiode, while
the point labeled T1 represents the IR emitter LED. Object height =9 c¢m, cross-section area =20 cm?.

A Gaussian blur filter was applied for visualization (o =2.5).

The resulting dataset contains the reflective intensity values from the six emitter
LEDs along with their corresponding labels. The dataset covers the entire coordinate
plane at a resolution of 0.5 cm. (Figure 5.) Combining signals from six transmitters creates
a distinctive channel pattern and provides data for position estimation. A total of 13,750
discrete data entries were recorded across 20 classes. Of the recorded data, 6974 entries
are located within 6 cm of the center of the coordinate plane and are classified as near-
field measurements. Objects positioned at a radial distance greater than 5 cm from the
center fall outside the field of view of the IR emitter and receiver diodes, resulting in lower
measurement stability.

Sum (o0«=2.5) [h11, cs40]

Yiom)

Yicm)

Y {cm)
Y {cm)
Y{cmi

Yiem)
om)

Yi

Figure 5. On the left are six coordinate—IR reflective intensity maps plotted separately for each emit-
ter LED. On the right is the simulated composite map obtained by merging the data from all six
emitter LEDs. Rx denotes the central receiver photodiode, while the points labeled T: through Ts

represent the IR emitter LEDs. A Gaussian blur filter was applied for visualization (o = 2.5).
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2.6. Model Development and Training

The developed model is a three-stage supervised learning pipeline. Its primary goal
is to determine the spatial coordinates (X,Y) of the target object, the class of its cross-sec-
tional area, and the object’s height. The inputs consist of infrared reflective intensity val-
ues from six independent channels. Using these six separate inputs, the model estimates
four target properties. All training and testing procedures were implemented in Python.
The Scikit-learn package was used for general model implementations, and XGBoost was
used for gradient boosting models. Our method emphasized minimizing information
leakage by employing out-of-fold (OOF) predictions in intermediate stages and perform-
ing model selection exclusively on cross-validated results.

2.6.1. Data Partitioning and Preprocessing

The dataset undergoes an automated preliminary check to ensure that no values are
missing or empty. For each combination of cross-section class, height, and coordinate, the
dataset has six raw readings from central IR diode and six different emitters. Cross-section
classes were encoded into integer labels using a label encoder, with the mapping stored
for reproducibility. All regression inputs were standardized using z-score normalization
when required by the model type. Before model training, the dataset was split into train-
ing (80%) and test (20%) sets, stratified by cross-section class to preserve class balance
across subsets.

2.6.2. Coordinate Regression

During the initial decision-making stage of the AI model, the primary objective was
to estimate the object’s X and Y coordinates on the plane. Since the object’s position di-
rectly influences subsequent predictions, this first decision layer was implemented as a
regression stage. At this stage, multiple methods were tested to interpret the six raw IR
sensor readings.

The tested models and their parameters are listed as follows:

e Ridge Regression with z-score standardization and regularization strength o = 50.
e  Multi-Output Random Forest Regressor (n = 400, min. split size= 4 samples)

e Multi-Output Gradient Boosting Regressor (n = 300, rate = 0.05, max. depth = 3)

e Multi-Output XGBoost Regressor (n = 300, rate = 0.05, max. depth = 3)

Test results were evaluated using 5-fold Stratified Cross-Validation (SCV). For each
method, performance metrics were computed for X and Y coordinates as well as Euclid-
ean distance, including the R-squared, Mean Absolute Error (MAE), Root Mean Squared
Error (RMSE), and custom-defined axis-wise success rate and radial success rate.

The axis-wise success criterion was defined as prediction errors within 1.2 cm for
each axis, while the radial success criterion was defined as Euclidean distance errors be-
low 1.6 cm. These thresholds were selected based on the system’s general performance
target of achieving sub-centimeter positional accuracy with 0.2 noise acceptance. At this
stage, all candidate models were trained and evaluated, and the model achieving the high-
est test success rate was selected for progression to the next stage.

2.6.3. Cross-Section Classification

Since the object could belong to one of two cross-section classes (20 cm? or 40 cm?), a
class-based model rather than a numeric regression model was developed for cross-sec-
tion analysis. Predictions from coordinate regression stage were concatenated with the
original six sensor readings to form an augmented feature vector. This vector was fed into
candidate classifiers:

e Logistic Regression (imax = 500)
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e Random Forest Classifier (n =400, min. split size= 4 samples)
e  Gradient Boosting Classifier (n = 300, rate = 0.05, max. depth = 3)

Evaluation used SCV on the training split. Reporting mean and standard deviation
of classification accuracy, macro-F1 score, and weighted-F1 score. Three classification
models were trained in parallel, and the results from the model with the highest accuracy
were used for the subsequent stage.

2.6.3. Height Regression

In the previous coordinate regression stage, the X and Y coordinates were predicted,
and in the cross-section classification stage, the class prediction was made. In the third
stage, these outputs were used in a height regression model. The models were trained
using the six raw inputs in addition to the coordinate and cross-section class data. Same
models to those used in the coordinate regression stage were applied to estimate the object
height in the 5-15 cm range.

The trained models were evaluated, as in the coordinate regression stage, using 5-
fold Stratified Cross-Validation (SCV), with metrics including the coefficient of determi-
nation (R?), mean absolute error (MAE), and root mean squared error (RMSE). The differ-
ence was that the definition of model success was changed from sub-centimeter prediction
consistency to +2 cm error consistency. Among the models trained in parallel, the one with
the highest success rate was carried forward to the final stage.

2.6.4. Final Model Training and Testing

After all models were evaluated and tested within their respective stages, the selected
models were retrained and executed sequentially on the entire dataset. Stage-specific and
overall success rates were recalculated.

Finally, for visualization purposes, coordinate-wise success mapping was per-
formed. These visualizations plotted the test set grid positions and color-coded each cell
by the proportion of successful predictions within that spatial region. The maps illustrated
how results varied across different points of the coordinate plane for each of the three
stages, enabling the identification of potential blind spots or biased conditions in the sen-
sor system.

Based on these visual inspections, points determined to be within the sensor system'’s
blind spots were excluded, and a separate dataset, referred to as near-field measurements,
was created. To prevent errors arising from the physical limitations of the sensor from
affecting the machine learning model, only the near-field measurements dataset was used
during training and testing.

3. Results
3.1. Dataset and Exploratory Checks

A large dataset comprising N = 13,750 unique samples was compiled. For model
training, a reduced dataset with N = 6974 unique samples were constructed. As features,
the dataset contains readings from six distinct IR emitters. The cross-section classes were
perfectly balanced (20 cm?: 3487; 40 cm?: 3487). For positioning, measurements are availa-
ble at every grid point from (-6, —6) to (+6, +6) at 0.5 cm intervals. Additionally, entries
were collected for object heights from 5 cm to 15 cm at 1 cm increments.

3.2. Coordinate Regression

In the first stage of pipeline, the model estimates the target object’s location in the
coordinate plane as (X, Y). The four candidate regression models specified in Materials
and Methods were evaluated using R?, per-axis MAE/RMSE, axis-wise success, and radial
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success. The Multi-Output Random Forest (MORF) achieved the best mean radial success
and was selected for downstream stages. Performance results are reported in Table 1. The
success criterion was defined as an absolute error < 1.2 cm on both X and Y axes relative
to the ground truth.

Table 1. Coordinate regression candidate model performance results.

Regression Model R2 (X) R2(Y) MAE (cm) Success % !
Ridge 0.083 0.074 1.98 %12.5
Multi-Output Random Forest 0.633 0.615 0.94 960
Multi-Output Gradient Boosting 0.578 0.566 1.13 %46
Multi-Output XGBoost Regressor 0.624 0.609 1.01 %55

! Radial success percentage.

The selected model achieves an overall radial success of approximately 60%, with a
mean absolute error (MAE) below 1 cm. This demonstrates that the trained model can
deliver sub-centimeter accuracy. Figure 6a presents the coordinate-based success rate,
whereas Figure 6b,c show ground-truth—prediction comparisons.
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Figure 6. Coordinate regression results. (a) Coordinate-wise XY success heatmap; each cell shows
the proportion of samples with per-axis error < 1.2 cm. (b) True vs. predicted X and (c) Y; the red

dashed line denotes the perfect model reference.

3.3. Cross-Section Classification

In the second stage, the classification model used the six raw IR value features to-
gether with the outputs of the coordinate regression model as inputs. Three classifier mod-
els were evaluated in this stage. Model performance was assessed using 5-fold stratified
cross-validation, with metrics including accuracy, macro-F1, and weighted-F1. The best-
performing model was selected for progression to the next stage. Detailed results for all
models are presented in Table 2.

Table 2. Cross-section classification candidate model performance results.

Regressor Model Accuracy (Mean * std)
Logistic Regression 0.641 + 0.006
Random Forest 0.912 +0.011
Gradient Boosting 0.875 + 0.014
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The selected Random Forest classifier achieved an accuracy of 91.2% (macro-F1 =
0.912) on the test set. The coordinate-based success rate is shown in Figure 7a, while the
confusion matrix is presented in Figure 7b.

g Coordinate-wise Cross-section Success (%) 1.0 Stage2 Confusion
-0.50 600
-0.25
e 0.3
0.00 500
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0 g =
o 85 300
. 8 100 200
&5 1.25
1.50 100
-0.5 0.0 0.5 1.0 15
% X 3 0 2 4 6 %9 pred
X {cm)
(@) (b)
Figure 7. Cross-section classifier results. (a) Coordinate-wise classification success heatmap; each
cell shows the accuracy in specific coordinates. (b) Confusion matrix.
3.4. Height Regression

The final regression stage was trained using the six raw sensor readings, the pre-
dicted coordinates, and the cross-section classification output as inputs to a height regres-
sion model. The goal was to predict object height as a numerical value. Predictions within
+2 cm of the ground truth were considered successful. Table 3 presents the results of four
different candidate models.

The Multi-Output Random Forest (MORF) regression model, which achieved the
highest custom-defined success rate, was selected. The coordinate-based success rate is
shown in Figure 8a, while Figure 8b presents the comparison between the model’s predic-
tions and the ground truth. When the error tolerance in the success definition was reduced
to £1 cm, the MORF regression model achieved a success rate of 75.3%.
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Figure 8. Height regression results. (a) Coordinate-wise regression success (error <1 cm) heatmap;

each cell shows the success ratio in specific coordinates. (b) True vs. predicted.
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Table 3. Height regression candidate model performance results.

Regressor Model R2  MAE (cm) RMSE (cm) Success % !
Ridge 0.098 2.58 3.00 %40
Multi-Output Random Forest 0.880 0.78 1.09 %94
Multi-Output Gradient Boosting 0.762 1.16 1.54 %85
RF + GBR (Avg. Ensemble) 0.840 0.94 1.26 7690

! Percentage of predictions that error <2 cm.

4. Conclusions

In this study, we demonstrated that our multi-emitter IR sensor system can recover
an object’s 2-D position, cross-section class, and height from six IR reflections using a
three-stage machine learning model.

The multi transmitter approach provides angular diversity with six illumination di-
rections. This reduces uncertainty related to reflectivity, color, and surface orientation.
Since a single receiver is protected, circuit complexity and cost are not high. Measurement
relies on the relative pattern and differences between channels rather than absolute inten-
sity. Thus, the machine learning model predicts the position, cross-section class, and
height more accurately.

Limitations

Experimental results show that a position MAE value of approximately 1 cm can be
achieved in the near field. The fundamental limiting factor is the photodiode viewing an-
gle, and the reliable operating region is limited to a diameter of approximately 10 cm in
the working position. In a different positioning, the effective operating region widens as
the distance between the sensor, and the target object increases.

In this study, all objects were wrapped with the same surface material to eliminate
differences in reflectivity and color. Therefore, the effect of object color or surface reflec-
tivity on the measurement results was not directly evaluated. Surfaces with darker or less
reflective coatings are expected to reduce the signal level, while lighter or reflective sur-
faces may increase it. Although the multi-emitter configuration relies on relative inter-
channel patterns, which may compensate for part of this variation, performance degrada-
tion is possible for objects with very low reflectivity. Future studies should systematically
investigate the influence of different colors and surface materials on prediction accuracy.

To observe the individual effect of targets of different colors on the sensor, three dif-
ferent colored objects were used as target objects: white crepe paper, gray cellulose paper,
and black printing paper. Measurements revealed a decrease in signal strength of up to
52% on white paper and 75% on black paper. This decrease leads to a similar decrease in
the detection of the distance of the objects. In addition, the signal-to-noise ratio (SNR)
increases. Only white objects were used in the current data set. The effect of different col-
ored objects on sensor performance will be the subject of future studies. Results of this
experiment can be seen in Figure 9.

The sensor can perform self-calibration by reading the ambient signal level without
triggering any of its emitters. However, strong sunlight may saturate the photodiode and
cause signal distortion. Rapidly varying infrared sources in the environment may also
increase overall noise. Since all experiments and dataset collection were conducted in-
doors under controlled lighting, further research is needed to evaluate the system’s ro-
bustness in outdoor conditions and under direct sunlight.
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Figure 9. Mean sensor responses for three paper covered targets of different colors (White Crepe
Paper, Gray Cellulose Paper, and Black Print Paper) as a function of horizontal distance of targets

up to 5 cm. Sensor response value decreases with both distance and reflectivity of targets color.

5. Discussion

Overall, the ultra-low-cost integrated hardware and staged learning approach meet
reliability goal in the near field: 60% sub-centimeter radial XY, >68% per-axis sub-centi-
meter positioning MAE, ~1.5 cm height MAE, and >80% cross-section classification accu-
racy from a compact, low-cost sensor. The model’s performance is primarily bounded by
the sensor’s physical field-of-view constraints. Owing to the IR receiver diode’s narrow
field of view, reliable positioning can be achieved only within an operational region of at
most 10 cm in diameter. It is expected that this boundary will be increased by increasing
the viewing angle of the photodiode or the distance between the photodiode and the tar-
get object.

Overall, the results of the study are promising for deeper analyses and wide range
area applications of this sensor system. In addition to contributing a dataset to the litera-
ture in this field, the study provides data on how a single-photodiode circular active IR
reflective intensity array sensor system performs in narrow-area, short-distance object de-
tection scenario.
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