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Complexity as Information
-

We need two things to determine the complexity of
something:

B An encoding over a finite alphabet (eg a
bitstring)

m A classifier function (aka observer) of the
strings that can determine whether two

encodings refer to the same object

—-n.3/17



Kolmogorov-complexity of a bit-
string
I

m (Classifier is a Turing machine

B Encodings are programs of the Turing machine
that output the thing (a bitstring)

B In the limit as n — oo, complexity is dominated
by the length of the shortest program (compiler
theorem).

B Random strings are maximally complex
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Effective complexity of English

literature
I

B Encoding is the latin script encoding words of
English

B (Classifier is a human being deciding whether
two strings of latin script mean the same thing.

B The vast majority of strings are meaningless
(gibberish), hence have vanishing complexity.
Random strings have low complexity.

B Repetitive, (algorithmic) strings are also fairly
low complexity.
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Encoding of Digraphs

I
n nodes, ¢ links, rank encoded linklist r

log,n+1 log,n log,n(n—1) (n(né— 1)>
.10 > T o

B Empty and full digraphs have minimal
complexity of ~ 4log, n bits

B Digraph has same complexity as its
complement

B Complexity peaks at intermediate link counts
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Classification of Digraphs

B Nodes are unlabelled

B Node position is irrelevant

B Two digraphs are equivalent if automorphic

o o
=
o O
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Automorphism problem
-

B Determine if two (di)graphs are automorphic
B Count the number of automorphisms
B Suspected as being NP

B Practical algorithms exist: Nauty, Saucy,
SuperNOVA
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Weighted Links

Want a graph that is “in between” two graph
structures to have “in between” complexity.
For network N x L with weights w;, Vi € L

C(N><L):/010(N><{iEL:wi<w})dw
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Food Web Data
I

Dataset nodes  links C  enCr) A =C—elnCer) |1nC_U<ElECER>|
celegansneural 297 2345 442.7 251.6 191.1 29
celegansmetabolic 453 4050 25421.8 25387.2 34.6 00
lesmis 77 508 199.7 114.2 85.4 24
adjnoun 112 850 3891 3890 0.98 00
yeast 2112 4406 33500.6  30218.2 3282.4 113.0
Chesapeake 39 177 66.8 45.7 21.1 10.4
Everglades 69 912 54.5 32.7 21.8 11.8
Florida 128 2107 128.4 51.0 77.3 20.1
Maspalomas 24 83 70.3 61.7 8.6 53
Michigan 39 219 47.6 33.7 14.0 9.5
Mondego 46 393 45.2 32.2 13.0 10.0
Narragan 35 219 58.2 39.6 18.6 11.0
Rhode 19 54 36.3 30.3 6.0 5.3
StMarks 54 354 110.8 73.6 37.2 16.0
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Shuffled model
e
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Networksexhibiting complexity
surplus
I

B Most real-world networks
B Not Erdos-Renyi networks (obviously)

B Not networks generated by preferential
attachment

B Some evolutionary systems: ECQab, Tierra, but
not Webworld

B Networks induced by dynamical chaos

B Networks induced by cellular automata
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Inducing a network from a dis-

crete timeseries
I

B A timeseries X = xq,X1,...,XNn, Where
X, e X CZ

B Construct a network with |N| nodes.

B Link weights w;; are given by the number of
transitions between x; and x; in X.
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Example: Lorenz system

X =0y —x)
y=x(p—z)—y
Z=2xy — Bz
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Dynamical Chaos results
I

Dataset nodes  links C  emCer) (¢ plnCer) | lnc_ggg Cer)|
celegansneural 297 2345 4427 251.6 191.1 29
PA1 100 99 98.9 85.4 13.5 2.5
Lorenz 8000 62 560.2 56.0 504.2 58.3

Hénon-Heiles 10000 31 342.0 57.3 284.7 55.6
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1D cellula automata

rule 30
'lﬂllIHZ‘IEII|I;D|D=I‘E=II‘_HI|I |

o 0 1 L L 1 o
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1D CA results
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