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My ambition:

- to present a quantitative theory of cognition, involving

elements such as TRUTH, BEL'EF,
KNOWLEDGE, CONTROL, ---

which is abstract (e.g. non-probabilistic), inspired by

INFORMATION THEORY and
GAME TH EORY, building largely on

NATURAL INTERPRETATIONS

(well, and some speculative considerations!) and with

WlDE APPL'CAT'ONS of interest to the

“convexity community”, to information theorists, to
statisticians etceteral!
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The world (€2), Nature and Observer, situations

NATURE: holder of truth! X state space with elements x,
truth instances or states. A preparation is a subset P C X.

OBSERVER: is concerned about truth but restricted to:
belief, action and control! Action and control will here be
identified and derived from belief: “belief is a tendency to act”
(Good 1952). To model these thoughts, introduce:

e Y belief reservoir. Y O X. Elements y are belief instances.

e Y action space or control space. You may think of w € 4
either as an action or as a control.

e A map, y — y, response maps Y into Y.

Atomic situations: Either certain pairs (x, y) (*Y-domain”)
or certain pairs (x, w) (“Y-domain”). Notation:

y = x (x is visible from y) or w > x (x is controlled by
w)- -
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Interaction, knowledge, effort

Truth and belief interact and lead to knowledge: z = MM(x,y)
or, in the Y-domain, z = I(x, w). Note: MN(x,y) = [1(x, p).
Knowledge instances z belong to the knowledge base Z.
Interpretation: z represents the way situations from the world
are presented to Observer or how situations are perceived by
Observer. I or [1is the interactor. It characterizes the world:

Q=0

Examples: If Z D Y D X, consider the classical world €4
(fits in with Shannon theory...) with interactor M;(x,y) = x
or a black hole Qg with interactor My(x,y) =y (or mixtures
if Z is an affine space, fits in with Tsallis theory...).
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Perception requires effort!

An effort functionmaps atomic situations, (x,y) or (x, w),
into | — 0o, 00]. Convenient to allow negative values as it
enables an easy switch from effort- to utility-based concepts
by a change of sign. Precise definitions - - -

® effort function: Yw = x : ®(x, w) > d(x, %).

® proper: “=" only if w = % (w adapted to x) or rhs=o0c.
o effort function: Yy = x : ®(x,y) > ®(x, x).
® proper: “=" only if y = x (perfect match) or rhs=oc.

If response is injective, ®(x, y) = ®(x, y).

Choice among scalarly equivalent effort functions amounts to
choice of unit. In a world Q = Qp there may, modulo
equivalence, only be one choice of a proper effort function.
This applies to Shannon and to Tsallis theory.

Similar definitions for utility-based concepts: U (V) is ... iff
®=—-U(®=-U)is so.
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Entropy, redundancy, divergence, inf. triples

® proper eff fct., ® the derived eff.fct. View ®(x, w) /d(x, y)
as information content of “x” in situation (x, w) /(x, y).

Entropy is minimal effort, given x (or guaranteed information
or necessary allocation of effort): H(x) = ®(x, X) = ®(x, x).

Redundancy is redundant effort: D(x, w) = ®(x, w) — H(x).
Rewritten: ®(x, w) = H(x) + D(x, w) (linking identity).
Further: D(x,w) >0, “=" iff w = X (fundamental
inequality). But: difficulty with H = ool Therefore define:

Information triple (Y-domain): a triple (&D,H,D) s.t. linking
identity and fundamental inequality hold. For the Y-domain,
(®,H,D), we require linking (¢ = H+D) and fundamental
inequality (D(x,y) >0, “="iff y = x). D is divergence.

Utility-based inf. trpl.: (U, M, D) s.t. (=0, —M, D) is effort-
based trpl. Similarly, (U,M,D) in Y- domam M: max utility. @

Slide 6/21



UNIVERSITY OF COPENHAGEN

Relativization, Updating

Given information triple (®,H, D). Consider prior yp chosen
by Observer who seeks an update with posterior y.
Updating gain defined by

U|}’0(X7y) = ¢(X7y0) - ¢(X,y) = D(X7y0) - D(Xay)
(Latter expression preferable!).

Assume that the marginal D*° is finite on some preparation
P. Then (U,,D%,D) is a utility-based inf. trpl. on

PRY ={(x,y)ly = x,x € P}. Note: ® not needed,;
construction makes sense based only on a general divergence
function D.
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Control determines what can be known!

Feasible preparations are determined from ® (or from ®): A
feasible preparation is a finite intersection of primitive
preparations, and these fall in two types, either strict or slack.
Notation and definitions for the primitive preparations are:

PY(h) = {&" = h} = {x|®(x,w) = h}
P (h*) = {&* < h} = {x|®(x, w) < h}.

The number h is the level, respectively maximum level of the
preparation in question (assuming P"(h) # 0).
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Games associated w. (®,H, D) or (¢, H, D)

P a preparation. Game 4(P) = 4(P|®): & objective
function, Nature maximizer chooses x € P, Observer
minimizer chooses w = P. Values for Nature, resp. for
Observer are:

supyep infsx &)(X, w) = sup,cp H(x) = Hmax(P)
infywp supep ®(x, w) = infysp Ri(W|P) = Rimin(P).
Ri stands for risk. Optimal strategies: for Nature, x* € P s.t.
H(x*) = Hmax(P); for Observer, w - P s.t.
Ri(w|P) = Rimin(P).
If “=" holds in minimax inequality Hmax(P) < ﬁimin(P) and
common value is finite, the game is in equilibrium.

Similar notions apply to the game ~(P) for the Y-region.
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Basic results for 4 and ~

[Basics] If one of the games 4(P) and ~(P) is in equilibrium
and has optimal strategies for both players, so does the other -
and if so, optimal strategies are unique and “agree”, i.e. if they
are (x*,w*) and (x™,y*), then x** = y* = x* and w* = x*.
[x* is the bi-optimal strategy. It satisfies: x* > P, x* € P,
notationally, x* € ctr(7P), the centre of P.]

[Identification] With x* € P and w* = P, (P) is in equi-
librium with x* as bi-optimal strategy if and only if the Nash
inequalities hold. If x* € ctr(P) and w* = x* is already known,
it is enough to check one of these: ¥x € P : &(x, w*) < H(x*).
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. and more, key results

[Properties] When conditions hold, the direct as well as the dual
Pythagorean inequalities hold:

Vx € P : H(x) 4+ D(x, w*) < H(x*),

Yw = P : Ri(w*|P) + D(x*, w) < Ri(w|P).

In particular, x* is the MaxEnt-attractor, ie. x, 2> x*
(D(xn, x*) — 0) for any (xp) in P with H(x,) — Hmax(P)-

[Robustness, core] Let (x*,w*) be strategies for 9(P) with
w* = x*. If w* is robust at the level of robustness h, i.e.
if ®(x,w*) = h for all x € P and h is finite, then 5(P) is
in equilibrium with h as value and with x* as the bi-optimal
strategy. Further, the Pythagorean equality holds:

Vx € P : H(x) + D(x, w*) = Hmax(P).

The results have natural counterparts for the game v(P).
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updating, given a prior

Analogous results hold for utility-based information triples.
Here, we only focus on updating in the Y-domain.

The setting is a general divergence function D (note, not
necessarily derived from an effort-function), a preparation P
and a prior yp € Y with D¥® < oo on P. The associated
updating triple is (U}, D**, D). An optimal strategy for
Nature is here called a D-projection of yg on P.

If x* € ctr(P), the game is in equilibrium with x* as bi-optimal
state iff the Pythagorean inequality for updating,

D(vaO) > D(X?X*) + D(X*vyO)
holds for every x € P.
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where does convexity come in?

Given information triple (¢,H,D) in Y-domain. Add
assumptions:

e X is a convex topological space,
e all “views" |y[= {x|y > x} are convex,

e y > X with X a convex combination X = > a;x; iff y > x;
for all i with «; > 0 (“if" suffices for some applications)

e all marginals @ are affine;

e suitable (!) semi-continuity assumptions.

For every convex combination X = ) ajx;
H (Za,-x,-) = > aiH(x;) + > aiD(x;,x) and, if H(X) < oo,
then, for every y € Y, the compensation identity holds:
> a;D(xi,y) =D (Z aiXh}/) + > @i D(x;,X).
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. continued

The condition Vx € P : ®(x,y*) < H(x*) is central! From it,
and from x* € P, you conclude equilibrium of ~(P) and
bi-optimality of x*. In particular, H(x*) = Hmax(P).

With convexity assumptions, H(x*) = Hmax(P) actually suffices
for these conclusions!

Further elaborations for updating games with convex
preparations as well as analytical existence results, exploiting
convexity- and topological assumptions, can be established.
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Other interpretations

Applications to Shannon theory is obvious! But a change of
interpretation opens for other applications. Three indications:

e Utility can be handled via a simple change of sign as
already discussed;

e What if Nature can communicate? Then we speak of
Expert and Observer becomes Customer. Customer asks for
advice but for despicable reasons Expert may give advice
against better knowing. How to keep the expert honest? Via
a paying scheme based on a proper effort function! In fact
classical (Brier, 1950 on weather forecasting,...);

e Think of states as causes, and response as the
transformation into associated consequences. This results in
models of cause and effect. An example is problems of
capacity in information theory. Then considerations of risk
become important (Kuhn-Tucker theorems of inf. theory...). @
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Atomic triples, Bregman construction

Y = X, a subinterval of | — 0o, 00[, X = x. An information
triple (¢, h,d) in this simple setting is an atomic information
triple over /. The important affinity property holds
automatically by a Bregman construction based on a smooth
concave entropy function h. Indeed, then

é(s,u) = h(u) + (s — v) h'(v):
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... large potential...

e generator need not be smooth; this points to the good sense
of extended modelling, allowing response to be set-valued;

e a natural process of integration preserves key properties;

e controls may be defined by (sub)regions corresponding to
straight lines. This points to basic affine properties of the
measuring process. Duality theory appears as a natural
application (not worked out);

e is a representation theorem possible?
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Integration of atomic triples

Integration of (¢, h,d) over set T = (T, pu). Let X =Y be
“appopriate” function space of (measurable) functions

x o T = I for which [ h(x(t))du(t) converges. Define
(®,H, D) by integration, i.e.

O(x,y) = /T H(x(1), y(£))di(t),
H(x) = /T h(x(6)) ()
D(x.y) = /T d(x(2), y(1))du(t)

The basic facts, d(s, u) > 0 with equality iff u = s is the
pointwise fundamental inequality. Examples: next slide...
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Two examples

1.st example: Take h(s) = —s? on ] — 0o, o[ as generator.
Then d(s, u) = (s — u)? and by suitable integration with L2
(or I?) as functionspace, you enter into Hilbert space theory
with D(x,y) = ||x — y||? ...

2.nd example: Take h(s) = sIni on [0,1] (or...). Then
d(s,u) = u—s+sln 3. With discrete probability
distributions (w.r.t. counting measure) as function space, you
enter discrete Shannon theory. With more general integration,
continuous information theory with versions of
Kullback-Leibler divergence are obtained.

Updating games in first example leads to standard results of
projection and the connection to classical Pythagorean
theorems. Updating for the second example leads to
information projections and to the Pythagorean theorems of
information theory.
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indication of further applications

Apart from information theoretical applications, we can point
to certain problems of location theory, especially Sylvesters
problem, to application in statistical physics (explanation of
Tsallis entropy ...), applications to statistics, especially to
exponential families ...
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Concluding remarks

e Key points: A quantitative and abstract theory of
cognition.

e A main feature: Interpretations guide the way!

e Technical advantage: Concrete optimization problems are,
typically, handled by the robustness theorem. This is in
contrast to the most common approaches to optimization,
where a technique based on Lagrange multipliers play the
main role.

e Challenges: Consolidate! (more applications, more
theoretical results, e.g. on the core and the connection to
exponential families, expansion of the setting, e.g. can
quantum information theory be covered?...)

Thank you for going through this appetizer!
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