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My ambition:

- to present a quantitative theory of 
ognition, involving

elements su
h asTRUTH, BELIEF,

KNOWLEDGE, CONTROL, · · ·
whi
h is abstra
t (e.g. non-probabilisti
), inspired by

INFORMATION THEORY and

GAME THEORY, building largely on

NATURAL INTERPRETATIONS

(well, and some spe
ulative 
onsiderations!) and with

WIDE APPLICATIONS of interest to the

�
onvexity 
ommunity�, to information theorists, to

statisti
ians et
etera!
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The world (Ω), Nature and Observer, situations

NATURE: holder of truth! X state spa
e with elements x ,

truth instan
es or states. A preparation is a subset P ⊆ X .

OBSERVER: is 
on
erned about truth but restri
ted to:

belief, a
tion and 
ontrol! A
tion and 
ontrol will here be

identi�ed and derived from belief: �belief is a tenden
y to a
t�

(Good 1952). To model these thoughts, introdu
e:

• Y belief reservoir. Y ⊇ X . Elements y are belief instan
es.

• Ŷ a
tion spa
e or 
ontrol spa
e. You may think of w ∈ Ŷ

either as an a
tion or as a 
ontrol.

• A map, y 7→ ŷ , response maps Y into Ŷ .

Atomi
 situations: Either 
ertain pairs (x , y) (�Y -domain�)

or 
ertain pairs (x ,w) (�Ŷ -domain�). Notation:

y ≻ x (x is visible from y) or w ≻ x (x is 
ontrolled by

w)· · ·
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Intera
tion, knowledge, e�ort

Truth and belief intera
t and lead to knowledge: z = Π(x , y)
or, in the Ŷ -domain, z = Π̂(x ,w). Note: Π(x , y) = Π̂(x , ŷ ).
Knowledge instan
es z belong to the knowledge base Z .

Interpretation: z represents the way situations from the world

are presented to Observer or how situations are per
eived by

Observer. Π or Π̂ is the intera
tor. It 
hara
terizes the world:

Ω = ΩΠ.

Examples: If Z ⊇ Y ⊇ X , 
onsider the 
lassi
al world Ω
1

(�ts in with Shannon theory...) with intera
tor Π
1

(x , y) = x

or a bla
k hole Ω
0

with intera
tor Π
0

(x , y) = y (or mixtures

if Z is an a�ne spa
e, �ts in with Tsallis theory...).
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Per
eption requires e�ort!

An e�ort fun
tionmaps atomi
 situations, (x , y) or (x ,w),
into ]−∞,∞]. Convenient to allow negative values as it

enables an easy swit
h from e�ort- to utility-based 
on
epts

by a 
hange of sign. Pre
ise de�nitions · · ·
Φ̂ e�ort fun
tion: ∀w ≻ x : Φ̂(x ,w) ≥ Φ̂(x , x̂).
Φ̂ proper: �=� only if w = x̂ (w adapted to x) or rhs=∞.

Φ e�ort fun
tion: ∀y ≻ x : Φ(x , y) ≥ Φ(x , x).
Φ proper: �=� only if y = x (perfe
t mat
h) or rhs=∞.

If response is inje
tive, Φ(x , y) = Φ̂(x , ŷ ).

Choi
e among s
alarly equivalent e�ort fun
tions amounts to


hoi
e of unit. In a world Ω = ΩΠ there may, modulo

equivalen
e, only be one 
hoi
e of a proper e�ort fun
tion.

This applies to Shannon and to Tsallis theory.

Similar de�nitions for utility-based 
on
epts: Û (U) is ... i�

Φ̂ = −U (Φ = −U) is so.
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Entropy, redundan
y, divergen
e, inf. triples

Φ̂ proper e�.f
t., Φ the derived e�.f
t. View Φ̂(x ,w) /Φ(x , y)
as information 
ontent of �x� in situation (x ,w) /(x , y).

Entropy is minimal e�ort, given x (or guaranteed information

or ne
essary allo
ation of e�ort): H(x) = Φ̂(x , x̂) = Φ(x , x).

Redundan
y is redundant e�ort: D̂(x ,w) = Φ̂(x ,w) − H(x).
Rewritten: Φ̂(x ,w) = H(x) + D̂(x ,w) (linking identity).

Further: D̂(x ,w) ≥ 0, �=� i� w = x̂ (fundamental

inequality). But: di�
ulty with H = ∞! Therefore de�ne:

Information triple (Ŷ -domain): a triple (Φ̂,H, D̂) s.t. linking

identity and fundamental inequality hold. For the Y -domain,

(Φ,H,D), we require linking (Φ = H+D) and fundamental

inequality (D(x , y) ≥ 0, �=� i� y = x). D is divergen
e.

Utility-based inf. trpl.: (Û,M, D̂) s.t. (−Û,−M, D̂) is e�ort-
based trpl. Similarly, (U,M,D) in Y -domain. M: max utility.
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Relativization, Updating

Given information triple (Φ,H,D). Consider prior y
0


hosen

by Observer who seeks an update with posterior y .

Updating gain de�ned by

U|y
0

(x , y) = Φ(x , y
0

)− Φ(x , y) = D(x , y
0

)− D(x , y).
(Latter expression preferable!).

Assume that the marginal D

y
0

is �nite on some preparation

P. Then (U|y
0

,Dy
0 ,D) is a utility-based inf. trpl. on

P ⊗ Y = {(x , y)|y ≻ x , x ∈ P}. Note: Φ not needed;


onstru
tion makes sense based only on a general divergen
e

fun
tion D.
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Control determines what 
an be known!

Feasible preparations are determined from Φ̂ (or from Φ): A
feasible preparation is a �nite interse
tion of primitive

preparations , and these fall in two types, either stri
t or sla
k.

Notation and de�nitions for the primitive preparations are:

Pw (h) = {Φ̂w = h} = {x |Φ̂(x ,w) = h} ;

Pw (h↓) = {Φ̂w ≤ h} = {x |Φ̂(x ,w) ≤ h} .

The number h is the level, respe
tively maximum level of the

preparation in question (assuming Pw (h) 6= ∅).
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Games asso
iated w. (Φ̂,H, D̂) or (Φ,H,D)

P a preparation. Game γ̂(P) = γ̂(P|Φ̂): Φ̂ obje
tive

fun
tion, Nature maximizer 
hooses x ∈ P, Observer

minimizer 
hooses w ≻ P. Values for Nature, resp. for

Observer are:

supx∈P infw≻x Φ̂(x ,w) = supx∈P H(x) = H

max

(P)

infw≻P supx∈P Φ̂(x ,w) = infw≻P R̂i(w |P) = R̂i

min

(P).

Ri stands for risk. Optimal strategies: for Nature, x∗ ∈ P s.t.

H(x∗) = H

max

(P); for Observer, w ≻ P s.t.

R̂i(w |P) = R̂i

min

(P).

If �=� holds in minimax inequality H

max

(P) ≤ R̂i

min

(P) and

ommon value is �nite, the game is in equilibrium.

Similar notions apply to the game γ(P) for the Y -region.
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Basi
 results for γ̂ and γ

[Basi
s℄ If one of the games γ̂(P) and γ(P) is in equilibrium

and has optimal strategies for both players, so does the other -

and if so, optimal strategies are unique and �agree�, i.e. if they

are (x∗,w∗) and (x∗∗, y∗), then x∗∗ = y∗ = x∗ and w∗ = x̂∗.

[x∗ is the bi-optimal strategy. It satis�es: x∗ ≻ P, x∗ ∈ P,

notationally, x∗ ∈ 
tr(P), the 
entre of P. ]

[Identi�
ation℄ With x∗ ∈ P and w∗ ≻ P, γ̂(P) is in equi-

librium with x∗ as bi-optimal strategy if and only if the Nash

inequalities hold. If x∗ ∈ 
tr(P) and w∗ = x̂∗ is already known,

it is enough to 
he
k one of these: ∀x ∈ P : Φ̂(x ,w∗) ≤ H(x∗).
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... and more, key results

[Properties℄When 
onditions hold, the dire
t as well as the dual

Pythagorean inequalities hold:

∀x ∈ P : H(x) + D̂(x ,w∗) ≤ H(x∗) ,
∀w ≻ P : R̂i(w∗|P) + D̂(x∗,w) ≤ R̂i(w |P) .

In parti
ular, x∗ is the MaxEnt-attra
tor , i.e. xn
D

→ x∗

(D(xn, x
∗) → 0) for any (xn) in P with H(xn) → H

max

(P).

[Robustness, 
ore℄ Let (x∗,w∗) be strategies for γ̂(P) with

w∗ = x̂∗. If w∗
is robust at the level of robustness h, i.e.

if Φ̂(x ,w∗) = h for all x ∈ P and h is �nite, then γ̂(P) is

in equilibrium with h as value and with x∗ as the bi-optimal

strategy. Further, the Pythagorean equality holds:

∀x ∈ P : H(x) + D̂(x ,w∗) = H

max

(P).

The results have natural 
ounterparts for the game γ(P).
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updating, given a prior

Analogous results hold for utility-based information triples.

Here, we only fo
us on updating in the Y -domain.

The setting is a general divergen
e fun
tion D (note, not

ne
essarily derived from an e�ort-fun
tion), a preparation P
and a prior y

0

∈ Y with D

y
0 < ∞ on P. The asso
iated

updating triple is (U|y
0

,Dy
0 ,D). An optimal strategy for

Nature is here 
alled a D-proje
tion of y
0

on P.

If x∗ ∈ 
tr(P), the game is in equilibrium with x∗ as bi-optimal

state i� the Pythagorean inequality for updating,

D(x , y
0

) ≥ D(x , x∗) + D(x∗, y
0

)
holds for every x ∈ P.
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where does 
onvexity 
ome in?

Given information triple (Φ,H,D) in Y -domain. Add

assumptions:

• X is a 
onvex topologi
al spa
e,

• all �views� ]y [= {x |y ≻ x} are 
onvex,

• y ≻ x with x a 
onvex 
ombination x =
∑

αixi i� y ≻ xi
for all i with αi > 0 (�if� su�
es for some appli
ations)

• all marginals Φy
are a�ne;

• suitable (!) semi-
ontinuity assumptions.

For every 
onvex 
ombination x =
∑

αixi

H

(

∑

αixi

)

=
∑

αi H(xi ) +
∑

αi D(xi , x) and, if H(x) < ∞,

then, for every y ∈ Y , the 
ompensation identity holds:

∑

αi D(xi , y) = D

(

∑

αixi , y
)

+
∑

αi D(xi , x) .

Slide 13/21



un i v er s i ty of 
openhagen

... 
ontinued

The 
ondition ∀x ∈ P : Φ(x , y∗) ≤ H(x∗) is 
entral! From it,

and from x∗ ∈ P, you 
on
lude equilibrium of γ(P) and
bi-optimality of x∗. In parti
ular, H(x∗) = H

max

(P).

With 
onvexity assumptions, H(x∗) = H

max

(P) a
tually su�
es

for these 
on
lusions!

Further elaborations for updating games with 
onvex

preparations as well as analyti
al existen
e results, exploiting


onvexity- and topologi
al assumptions, 
an be established.
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Other interpretations

Appli
ations to Shannon theory is obvious! But a 
hange of

interpretation opens for other appli
ations. Three indi
ations:

• Utility 
an be handled via a simple 
hange of sign as

already dis
ussed;

• What if Nature 
an 
ommuni
ate? Then we speak of

Expert and Observer be
omes Customer. Customer asks for

advi
e but for despi
able reasons Expert may give advi
e

against better knowing. How to keep the expert honest? Via

a paying s
heme based on a proper e�ort fun
tion! In fa
t


lassi
al (Brier, 1950 on weather fore
asting,...);

• Think of states as 
auses, and response as the

transformation into asso
iated 
onsequen
es. This results in

models of 
ause and e�e
t. An example is problems of


apa
ity in information theory. Then 
onsiderations of risk

be
ome important (Kuhn-Tu
ker theorems of inf. theory...).
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Atomi
 triples, Bregman 
onstru
tion

Y = X , a subinterval of ]−∞,∞[, x̂ = x . An information

triple (φ, h, d) in this simple setting is an atomi
 information

triple over I . The important a�nity property holds

automati
ally by a Bregman 
onstru
tion based on a smooth


on
ave entropy fun
tion h. Indeed, then

φ(s, u) = h(u) + (s − u) h′(u):

ϕ(s, u)

s
0

u s s
1

h(s)

d(s, u)
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... large potential...

• generator need not be smooth; this points to the good sense

of extended modelling, allowing response to be set-valued;

• a natural pro
ess of integration preserves key properties;

• 
ontrols may be de�ned by (sub)regions 
orresponding to

straight lines. This points to basi
 a�ne properties of the

measuring pro
ess. Duality theory appears as a natural

appli
ation (not worked out);

• is a representation theorem possible?
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Integration of atomi
 triples

Integration of (φ, h, d) over set T = (T , µ). Let X = Y be

�appopriate� fun
tion spa
e of (measurable) fun
tions

x : T 7→ I for whi
h
∫

T
h(x(t))dµ(t) 
onverges. De�ne

(Φ,H,D) by integration, i.e.

Φ(x , y) =

∫

T

φ(x(t), y(t))dµ(t) ,

H(x) =

∫

T

h(x(t))dµ(t)

D(x , y) =

∫

T

d(x(t), y(t))dµ(t) .

The basi
 fa
ts, d(s, u) ≥ 0 with equality i� u = s is the

pointwise fundamental inequality. Examples: next slide...
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Two examples

1.st example: Take h(s) = −s2 on ]−∞,∞[ as generator.
Then d(s, u) = (s − u)2 and by suitable integration with L2

(or l2) as fun
tionspa
e, you enter into Hilbert spa
e theory

with D(x , y) = ‖x − y‖2 ...

2.nd example: Take h(s) = s ln 1

s
on [0, 1] (or...). Then

d(s, u) = u − s + s ln s
u
. With dis
rete probability

distributions (w.r.t. 
ounting measure) as fun
tion spa
e, you

enter dis
rete Shannon theory. With more general integration,


ontinuous information theory with versions of

Kullba
k-Leibler divergen
e are obtained.

Updating games in �rst example leads to standard results of

proje
tion and the 
onne
tion to 
lassi
al Pythagorean

theorems. Updating for the se
ond example leads to

information proje
tions and to the Pythagorean theorems of

information theory.
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indi
ation of further appli
ations

Apart from information theoreti
al appli
ations, we 
an point

to 
ertain problems of lo
ation theory, espe
ially Sylvesters

problem, to appli
ation in statisti
al physi
s (explanation of

Tsallis entropy ...), appli
ations to statisti
s, espe
ially to

exponential families ...
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Con
luding remarks

• Key points: A quantitative and abstra
t theory of


ognition.

• A main feature: Interpretations guide the way!

• Te
hni
al advantage: Con
rete optimization problems are,

typi
ally, handled by the robustness theorem. This is in


ontrast to the most 
ommon approa
hes to optimization,

where a te
hnique based on Lagrange multipliers play the

main role.

• Challenges: Consolidate! (more appli
ations, more

theoreti
al results, e.g. on the 
ore and the 
onne
tion to

exponential families, expansion of the setting, e.g. 
an

quantum information theory be 
overed?...)

Thank you for going through this appetizer!
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