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Abstract: Minimal entropy martingale measure (MEMM) and geometric Levy process has been
introduced as a pricing model for the incomplete financial market. This model has many good
properties and is applicable to very wide classes of underlying asset price processes. MEMM is the
nearest equivalent martingale measure to the original probability in the sense of Kullback-Leibler
distance and is closely related to the large deviation theory .Those good properties has been explained.
MEMM is also justified for option pricing problem when the risky underlying assets are driven by
Markov-modulated Geometric Brownian Motion and Markov-modulated exponential Levy model.
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1. Introduction

The equivalent martingale measure method is one of the most powerful methods in the option pricing
theory. If the market is complete, then the equivalent martingale measure is unique. On the other hand,
in the incomplete market model there are many equivalent martingale measures. So we have to select



one equivalent martingale measure (EMM) as the suitable martingale measure in order to apply the
martingale measure method.
Over the past three decades, academic researchers and market practitioners have developed and
adopted different models and techniques for option valuation. The path-breaking work on option
pricing was done by Black and Scholes [5] and Merton [31]. Follmer and Sondermann [18], Follmer
and Schweizer [19] and Schweizer [39] determined a martingale pricing measure by minimizing a
quadratic function of the losses from an imperfectly hedged position. Davis [10] considered a
traditional economic argument for valuation, namely the marginal rate of substitution, and determined
a pricing measure for option valuation by solving a utility maximization problem.
The well-known Black-Scholes model

dS, =5, (udt + adW,)
is a very good model for the option pricing, even so this model has many week points, for example the
gap between the historical volatility and the implied volatility, fat tail property and asymmetry property
of the distribution of the log returns, etc. And so we need to introduce new models which may illustrate
those properties. The geometric Lévy process model is one of them. This model is an incomplete
market model, so there are many equivalent martingale measures. As the first candidate for the
equivalent martingale measure the minimal martingale measure was introduced in [19]. After that
several candidates have been offered, for example the Esscher martingale measure [20], the variance
optimal martingale measure [40], the minimal entropy martingale measure [32] and etc.
In recent years, there is a considerable interest in the applications of regime switching models driven by
a hidden Markov Chain process to various financial problems. For an overview of hidden Markov
Chain processes and their financial applications, see Elliott et al. [11] and Elliott and Kopp [12]. Some
works on the use of hidden Markov Chain models in finance include Elliott and van der Hoek [13] for
asset allocation, Pliska [37] and Elliott et al. [14] for short rate models, Elliott and Hinz [16] for
portfolio analysis and chart analysis, Guo [24] for option pricing under market incompleteness,
Buffington and Elliott [6, 7] for pricing European and American options, Elliott et al. [17] for volatility
estimation and the working paper by Elliott and Chan in 2004 for a dynamic portfolio selection
problem. Much of the work in the literature focus on the use of the Esscher transform for option
valuation under incomplete markets induced by Lévy-type processes. There is a relatively little amount
of work on the use of the Esscher transform for option valuation under incomplete markets generated
by other asset price dynamics, such as Markov regime switching processes. The market described by
the Markov-modulated GBM model is incomplete in general, and, hence, the martingale measure is not
unique. Instead of using the argument by Guo [24] that the market is completed by Arrow-Debreu
securities, we can adopt the regime switching Esscher transform which is the modification of the
random Esscher transform introduced by Siu et al. [41].1t is assumed that the process of the parameters
for the regime switching random Esscher transform is driven by the hidden Markov Chain model. By
using the result in Miyahara [33], in [15] is justified the pricing result by the minimal entropy
martingale measure, (MEMM). In this paper MEMM method is reviewed. Our paper organizes as
follows: Section two presents the main idea of our paper. Geometric Lévy process and minimal entropy
martingale measure pricing models is stated in section two. Section three considers Option pricing and
MEMM under regime switching. The forth section is related to some other application of MEMM.
Finally have been stated conclusion of the paper and proposes some topics for further investigation.

2. Geometric Lévy process and minimal entropy martingale measure pricing models

We assume that the value process of bond is given by

where r is a positive constant. A pricing model consists of the following two parts:
(A) The price process St of the underlying asset.

(B) The rule to compute the prices of options.



For the part (A) we adopt the geometric Lévy processes, so the part (A) is reduced to the selecting
problem of a suitable class of the geometric Lévy processes. For the second part (B) we adopt the

martingale measure method. then the price of an option X is given by e"'*EQ [X]. Our studies in this
paper are carried on under such a framework.

2.1 Geometric Lévy processes
The price process 5, of a stock is assumed to be defined as what follows. We suppose that a probability

space (£, F,P) and a filtration {F,; 0 = t = T} are given, and that the price process §, = SyeT of a
stock is defined on this probability space and given in the form
S, = S,e T 0<t=T

Where Z, is a 1évy process. Such a process S, is named the geometric 1évy process (GLP) and denoted
the generating triplet of Z, by (o%,v(dx),b).
The price process S, has the following another expression
) S. = SE(Z),
where £(Z), is the Doléans-Dade exponential (or stochastic exponential) of
Z.,and Z, is a Lévy process corresponding to the original Lévy process Z..
The generating triplet of Z,, say (62,7 (dx),b), is

-
= =

ac=g

T(dx) = (veJ (dx), Jx)=e"—1

E=b+%cr:+ j(ex—l—x]v(dx]—i- J(ex—ljv(dxj— f (e* — 1)v(dx)

{lx[=1} {xe—1} {log2<xz1}

2.1.1 Simple return process and compound return process
As have be seen in the previous section, the GLP has two kinds of representation such that

S, = Suezr = SEE(EJE
The processes Z ; and Z, are candidates for the risk process. In [35] is shown that

(m) (n)
e AS ( AS
Az ==, Az =log| 1+ =5
Sie-1 Sk-1
Thus, AZ ,';"}is the simple return process of § ,';"} and AZ ,';"} is the increment of log-returns and it is
(n)

called the compound return process of 5, .

2.2 Equivalent martingale measures for GLP

The candidates for the suitable equivalent martingale measure are as follows.

(1) Minimal Martingale Measure (MMM) (Follmer-Schweizer(1991))

(2) Variance Optimal Martingale Measure (VOMM)(Schweizer(1995))

(3) Mean Correcting Martingale Measure (MCMM)

(4) Esscher Martingale Measure (ESMM) (Gerber-Shiu(1994), B-D-E-S(1996))

(5) Minimal Entropy Martingale Measure (MEMM) (Miyahara(1996), Frittelli(2000))

(6) Utility Based Martingale Measure (U-MM) [35]



2.2.1 Esscher transforms and Esscher Martingale Measure (ESMM)
Let R, 0=t =T, be a stochastic process. Then the Esscher transformed measure of P by the risk
process R, and the index process k. is the probability measure of Pgiii defined by

(ESS) r'T
\ [ h.ar
R[D_T:J?:[D_T: | _ gin st

dP - E[E'rﬂrh'sﬂ's]

This measure transformation is called the Esscher transform by the risk process R, and the index
process h.

In the above definitions, if the index process is chosen so that the pg[i;ﬂh[”_
2559 Tl [0 T

of 5,, then P!;‘[ B is called the Esscher transformed martingale measure of §, by the risk process
o.T1-T [0,

R,, and it is denoted by p;iiﬂor simply P ;EE—"'-'}'

is a martingale measure

2.2.2 Minimal entropy martingale measure (MEMM)
If an equivalent martingale measure P satisfies
H(P*|P) =< H(Q|P) ¥ @ : equivalent martingale measure;
then P is called the minimal entropy martingale measure (MEMM) of 5,. Where H(@Q|P) is the
relative entropy of @ with respect to P

dq .
H(QIP) = L log[ﬁ] dQ ,if Q<P

0o, otherwise,

Proposition: The simple return Esscher transformed martingale measure Pég";f} of 5, is the minimal
5.1

entropy martingale measure (MEMM) of §,.

Remark: The uniqueness and existence theorems of ESMM and MEMM for geometric Lévy processes
is proved in [34].

2.3 Comparison of ESMM and MEMM

a)Corresponding risk process: The risk process corresponding to the ESMM is the compound return
process, and the risk process corresponding to the MEMM is the simple return process. The simple
return process seems to be more essential in the relation to the original process rather than the
compound return process.

b) Existence condition: For the existence of ESMM, P
condition respectively is necessary.

j |(e¥ — 1)e™ *|u(dx) < o
flxl>1}

(ESSM)

, and MEMM, P* , the following

f I(e¥ — 1)ef & ~V]y(dx) < oo
fll>1)

This means that the MEMM may be applied to the wider class of models than the ESMM. This
difference does work in the stable process cases.



c¢) Corresponding utility function:The ESMM is corresponding to power utility function or logarithm
utility function. On the other hand the MEMM is corresponding to the exponential utility function. the
MEMM is very useful when one studies the valuation of contingent claims by (exponential) utility
indifference valuation.

2.3.1 Properties special to MEMM

a) Minimal distance to the original probability:

The relative entropy is very popular in the field of information theory, and it is called Kullback-Leibler
Information Number or Kullback-Leibler distance. Therefore we can state that the MEMM is the
nearest equivalent martingale measure to the original probability P in the sense of Kullback-Leibler
distance.

b) Large deviation property:

The large deviation theory is closely related to the minimum relative entropy analysis, and the Sanov’s
theorem or Sanov property is well-known. This theorem says that the MEMM is the most possible
empirical probability measure of paths of price process in the class of the equivalent martingale
measures [34].

c)convergence question:

Several authors have proved in several settings and with various techniques that the minimal entropy

martingale measure is the limit, as p ™ 1, of the so-called p-optimal martingale measures obtained by

minimizing the f-divergence associated to the function f(¥) = ¥¥. This line of research was initiated
in [21], [23], and later contributions include [28], [30], [42].

Apart from the above, there are a number of other areas where the minimal entropy martingale measure
has come up [44]; these include

- option price comparisons [2], [3], [29], [26], [27], [36];

- generalizations or connections to other optimal ELMMs [1], [8], [9], [43];

- utility maximization with a random time horizon [4];

- good deal bounds [29];

- acalibration game [22].

3 Option pricing and Esscher transform under regime switching

In [15] is considered the option pricing problem when the risky underlying assets are driven by
Markov-modulated Geometric Brownian Motion (GBM). That is, the market parameters, for instance,
the market interest rate, the appreciation rate and the volatility of the underlying risky asset, depend on
unobservable states of the economy which are modeled by a continuous-time Hidden Markov process.
The market described by the Markov-modulated GBM model is incomplete in general and, hence, the
martingale measure is not unique. They adopt a regime switching random Esscher transform to
determine an equivalent martingale pricing measure. As in Miyahara [33], they can justify their pricing
result by the minimal entropy martingale measure (MEMM).

3.1 The model

Suppose (12, F, P) is a complete probability space, where F is a real-world probability measure. Let T
denote the time index set [0, 7] of the model. Let {W.}, . denote a standard Brownian Motion on
(1, F,P). We assume that the states of the economy are modeled by a continuous-time hidden Markov
Chain process {X,}..r on (12,F, P) with a finite state space X := (x,,%X,,...,%,). Without loss of
generality, we can identify the state space of {X,}..; to be a finite set of unit vectors {&,,8,,..., 8/,
where e, = (0,...,1,...,0) € R". We suppose that {X,}.. and {W,}, ., are independent.



Write A(t) for the generator [@;;(t)]; ;=12 - Then, from Elliott et al. [11], we have the following

semi-martingale representation theorem for {X,},-r
t

X, =X, +j A(s)X ds + M,
o
where {M,},.; is an R"-valued martingale increment process with respect to the filtration generated

by {X,}..r . We consider a financial model consisting of two risky underlying assets, namely a bank

account and a stock, that are tradable continuously. The instantanecous market interest rate {r(t,X,)}.cr
of the bank account is given by:

= r(tX,) ={rX.),
where r := (1, 7y,...,7y ) with 7, = 0 foreach i = 1,2,...,N and {.,.) denotes

the inner product in R™. In this case, the dynamics of the price process {B,}.-for the bank account are
described by:

dB, = r,B,dt,By=1.
We suppose that the stock appreciation rate {u, },-.rand the volatility {c,}..r of S also depend on
{X.}ser and are described by:

He 2= F(LX:) = IIlll-‘-"'!;]{r:"’ g, = U[trxrj = {JrXr:"
where p := (g, fs,....4y) and o := (6y,0,,...,0y;) with g, = 0 for each i = 1,2,...,N. The
dynamics of the stock price process {S,}.cr are then given by the following Markov-modulated
Geometric Brownian Motion:
dS,= u 5. dt+o.5dW, 5,==s.

Let Z, denote the logarithmic return In(5,/5;) from 5 over the interval [0, t].
Then, the stock price dynamics can be written as:

S, =5,exp(Z, —Z,),
Where

t t
zr=f (1, —302)ds +Jr o, dW,
o o

Let 8, := 8(t,X,) denote the regime switching Esscher parameter, which can be written as follows:
o(t.x.)=(6,X.)

where 8 := (8,,6,,....8,) € RY. Then, the regime switching Esscher transform @, ~ P on G, with

respect to a family of parameters {6, }.(.is given by:

qu,' _ exp (J;6.dz,)
[ r
dP > E,lexp ([16,dZ,)|F]
Since [ 6,dZ, |FX~N(fy 6 (u, —102)ds, [ 207 ds).

The Radon-Nikodim derivative of the regime switching Esscher transform is given by:
The Radon-Nikodim derivative of the regime switching Esscher transform is given by:

dQg _ i 1 [* 22
Elgr = exp ( Dgsﬂ_sdm__ Dgs o, ds)

-
=

teT

Here, we justify the choice of the equivalent martingale measure ¢z using the regime switching
Esscher transform by minimizing the relative entropy with respect to P.

Proposition: Suppose there exists a ; such that the following equation is satisfied:
B, = e — M,
b -+

as




Let @ be a probability measure equivalent to the measure P on 5, defined by the following Radon-
Nikodym derivative:

d@fx t ; t
ﬁlgr:z exp (f B.o.dW, _Ef Bro; ds)
o o

Then,
1. @7 is well defined and uniquely determined by the above Radon-Nikodym derivative,

2. @ is the MEMM for the Markov-modulated GBM.
The proof of Proposition 3.1 is similar to the proof of Theorem 1 in Miyahara [33].

4. Some other application

In [38], is extended the result of Fujiwara (2009) to a general Markov-modulated Lévy model whose
the main feature is the presence of a modulator factor which changes the characteristic of the dynamics
of risky asset under different regimes. Their main contribution is to give an expression, when it exists,
for the minimal entropy equivalent measure for this class of models. That work generalizes some
previous works in the literature which have treated either the exponential Lévy case or the exponential
additive case.

[9] deals with the existence and the explicit description of the minimal entropy—Hellinger local
martingale density (called MH local martingale density). They show that this density is determined by

point wise solution of equations in R® depending only on the local characteristics of the discounted
price process S. The uniform integrability as well as other integrability properties for the MH local
martingale density is illustrated.

4. Conclusions

As we have seen, the MEMM has many good properties and seems to be superior to ESSMM from the
theoretical point of view. And we can say that the [GLP & MEMM] model, which has been introduced
in [21], is a strong candidate for the incomplete market model.

Developing method is found to price options when the risky underlying assets are driven by Markov-
modulated Geometric Brownian Motion (GBM) based on a modification of the random Esscher
transform by Siu et al. [41], namely the regime switching random Esscher transform. The choice of this
martingale pricing measure is justified by the minimization of the relative entropy. Finally may explore
the applications of these models to other types of exotic options or hybrid financial products, such as
barrier options Asian options, game options and option-embedded insurance products, etc.
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