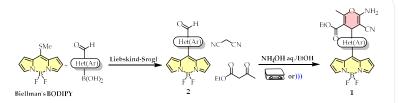
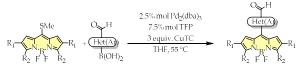


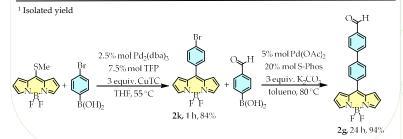
BODIPY-4H-Pyran Hybrids Synthesis


Alexis S. Zamora-Vázquez , Diana E. Ramírez-Ornelas, Enrique Alvarado-Martínez, Miguel A. Vázquez* , Eduardo Peña-Cabrera*

Departamento de Química, Universidad de Guanajuato, Noria Alta S/N, Guanajuato 36050, México

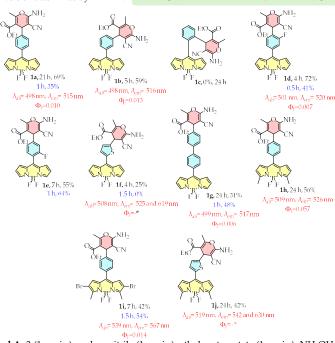

STATEMENT

as.zamoravazquez@ugto.mx


One-pot multicomponent reactions (MCRs) are efficient chemical transformations with high atom economy and a rapidly manner for molecular complexity targets synthesis. In that sense, is well known base-catalyzed reaction of an aldehyde, malononitrile and ethyl acetoacetate for synthesis of 4H-pyran (1). Incorporation of fluorescent scaffold to molecular complex molecule increase it value and application posibilities. Attending this precepts we contribute with a synthetic procedure for BODIPY-4H-Pyran hybrids synthesis through MCR using formyl-containing BODIPYs (2) obtained by Pd-catalyzed Liebskind-Srogl (LSCC) and Suzuki-Miyaura (SMCC) cross couplings. Finally, products 1 were obtained by conventional heating and some of same products by reduced waste ultrasound assisted procedure.

LSCC FOR ALDEHYDE SYNTHESIS

Biellman's BODIPY			2		
compound	Het(Ar)	R ₁ , R ₂	time	yield(%)¹	
2a	O _H	-H, -H	0.5 h	75	
2b	H	-H, -H	0.5 h	98	
2c		-H, -H	0.5 h	80	
2d	O H O H	-H, -H	1 h	72	
2e	F	-H, -H	0.5 h	86	
2f	S H	-H, -H	4 h	71	
2h		-H, -CH ₃	1 h	68	
2i	OH	-Br, -CH ₃	1 h	67	
2j	SH	-Н, -СН ₃	6 h	64	



SCREENING OF MCR Hold From the product the product of the produ

¹ Isolated yield

²% Conversion determined by ¹H NMR

BODIPY-4H-PYRAN HYBRIDS

Method A: 3 (1 equiv.), malononitrile (1 equiv.), ethyl acetoacetate (1 equiv.), NH₄OH (1 equiv.), ethanol, room temperature. **Method B**: 3 (1 equiv.), malononitrile (1 equiv.), ethyl acetoacetate (1 equiv.), NH₄OH (1 equiv.), ethanol, sonication (42 kHz). **Optical properties:** λ_{ab} = absorption maximum, λ_{em} = emission maximum, Φ_F = fluorescence quantum yield estimated in MeOH using the parent Borondipyrromethene (Φ_F = 80.8 % in EtOAc) as standard.

CONCLUSIONS

It was obtained new highly functionalized bioconjugates composed by BODIPY and 4H-pyran by MCR catalyzed by aqueos NH4OH, malononitrile, ethyl acetoacetate and formyl-containing BODIPYs through two equipareble methods. Method A by conventional heating and method B by greener procedure as ultrasonic activation.

ACKONWLEDGMENTS

A. S. Z.-V. wish to thank SECIHTI (Mexico) for graduate scholarship. The authors appreciate the Guanajuato National Laboratory UG-UAA-CONACyT (# 316011) for their generous allocation of analytical resources. This research was funded by DAIP-UG (grant # 076-2025).