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Abstract:  In classical mechanics, we have individual particle and invariant density in the

phase space. In quantum mechanics, any particle is sensitive in a different way from all other

particles, for its position and also to the measure process. Thus, we substitute the classical

probability  in  the  phase  space  with  the  conditional  probability  in  the  network  of

communicating particles. Any probability and entropy are functions of the phase position

conditioned by the position of the other particles. Therefore, for different measures we have

different conditional entropies. The space of the entropies is a curved and possible torque

multidimensional space where the derivative is the covariant derivative on a manifold of the

entropic space. At the zero quantum field, the covariant derivative commutes and Fisher

matrix is part of the kinetic terms in the Lagrangian where the derivative is the covariant

derivative. With Lagrange minimum condition and the entropic space it is possible to show

a connection between entropy space and Bohm potential in quantum mechanics. Entropy

multidimensional space includes dependence and entanglement as geometric structure of the

entropy.  Now  we  can  create  a  non-zero  quantum  field  approach  when  the  covariant

derivative does not  commute so we have curvature and torsion.   The non-zero quantum

field can be the Casimir field of forces. Therefore, Casimir force as gravity in the space-time

is modelled by curvature and torsion of  the  entropic space.  Useful connection between

dependence and covariant derivatives are obtained by copula (dependence measure) and

quantum mechanics.
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1. Introduction

In classical mechanics,  we  have individual particle and invariant  density in the  phase space.  In

quantum mechanics, any particle is sensitive in different way from all other particles, for its position and

to the measure process. In quantum mechanics, we substitute the classical probability in the phase space

with the conditional probability in the network of communicating particles. Therefore, we have the set

of conditional density functions or  likelihood functions one for  each incompatible variable such as

momentum and position

That is the probabilities of the observed outcomes given certain parameter values. For example, the

parameters are the ordinary standard deviations of position and momentum [1].  In many cases, it is

useful  the  log-likelihood  that  for  the  classical  thermodynamic  equilibrium is  connected  with  the

Boltzmann entropy. So, we have

Another example is the communication network with electrons that connects atoms in chemical system

(valence bond). It is determined by the conditional probabilities of the output events measured on the

set of electrons in the i atoms given the input events preparation on the set of electrons in one j atom

[2]. The conditional density matrix is

Any probability and entropy are functions of the phase position conditioned by the position of the other

particles. Therefore, for different measures we have different conditional entropies. The space of the

entropies by Boltzmann entropy is given by the multidimensional entropic form

So for different measures we have the system of the entropies

log ( ,.., | , ,......, )1 1 21 1 1
log ( ,.., | , ,......, )2 1 22 2 1                            (5)

...

log ( ,.., | , ,......, )1 21

S k x x mn
S k x x mn

S k x x mNN N n

    

    

    

 

 

 








( , ,.. | , ,.., )                               (1)1 2 1 2x x xm nj
   

log                   (2)S k 

( | )                          (3)
, ,

xi ji j i j
  

log ( | )                     (4)S k xi ji i
 
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The (5)  is a  change of  references  from entropic reference as Cartesian reference to  parametric

reference as non- Euclidean reference. Because the metric (square of the entropic distance) for the

entropic reference is

2 2 2 2 2 2 2..... .....            (6)1 2 1 2ds d d d dS dS dSN N         

For the parameters reference we have

.....                 (7)1 2
1 2

j j j
d d d d mj

m

  
   

  

  
   

  

So

2 2 2 2.....1 2

2 21 1 1( ..... ) +( ..... )   1 2 1 2
1 2 1 2

   (8)

ds d d d N

N N Nd d d d d dm m
m m

  

     
     

     

    

     
     

     

That can be written in this way

...
1 1 1 2 1

1
...2 2

2 1 2 2 2....
... ... ... ...

...
1 2

j j j j j j

mj j jT
d

j j j j j j
d

ds mj j j

d m
j j j j j j

m m m mj j j

     

     
      


     


     

     

       
   

      
                        
 
  
      
   

      

1

2          (9)
....

d

d

d m






 
 
 
 

  
   



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Or

2                              (10),,

( ,... )                   (11)
, 1

i kds G d di ki k

where

j j
G x x

i k n j
i k

 

 

 

 

 
 

 

is the metric tensor for the parameter space. The entropic space is a curved space where the derivative

is the covariant derivative on a manifold of the entropic space. At the zero quantum field, the covariant

derivative commutes and the Fisher matrix is part  of the kinetic terms in the Lagrangian where the

derivative is the covariant derivative. With Lagrange minimum condition and the entropic space it is

possible to  show a connection between entropy space  and Bohm potential in quantum mechanics.

Entropy multidimensional space includes dependence and entanglement as a geometric structure of the

entropy. Now we can create non-zero quantum field approach when the covariant derivative does not

commute so we have curvature and torsion.   The non-zero quantum field can be the Casimir field of

forces. So Casimir force as gravity [3] in the space time is modelled by curvature  and torsion of the

entropic space. Useful connection between peculiar quantum dependence and covariant derivatives can

be obtained by copula theory (dependence measure by multivariate probability distribution) within the

traditional structure of quantum mechanics 

2. Zero field of quantum forces for Boltzmann entropic vector

In this chapter, we will show that classical quantum mechanics can be obtained by the substitution of the

classical derivative with the covariant derivative in the Boltzmann entropic space. When we have zero

field of quantum mechanics with the change of the derivative operator we can show that Boltzmann

entropic geometric interpretation of the mutual non local influence of the particle gives us the quantum

potential and,  consequently, the  Schrödinger  equation.  We use  the  Maxwell scheme to  clarify the

connection between Boltzmann entropic geometry and quantum mechanics [see 4-6]

Given a generic vector  which components in the Cartesian space  k  are  V j we build its covariant

components

j j
V v V V ejk jkj

e  is a covariant set of  basis vectors
j




  
             (12)

The covariant set of basis vectors can be represented in this matrix form
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...1,1 12 1

...21 22 2( ),
... ... ... ...

...1 2

e e e N

e e e Ne e xj j i

e e eNNN N

 

 
 
 
 
  

              (13)

The controvariant components are

i jiv V V ej jjj

j
e  is a controvariant set of  basis vectors





 
      (14)

Where

j j
e e

k k
                      (15)

Now we define the covariant derivative in this way

2j j ev V Vj j jj jkD V D v V e Vh h k h k h hh h k j

 

     

    
     

     
    (16)

In the traditional tensor calculus we have

2
ej j j

eh k h kh j



 

 
  

 
        (17)

So

( )
j j jeV V Vjj j j j j

D V D v e V e V e V eh h hhh h k j j kh j kh j  

  
        

  
      (18)

The components of the covariant derivative are 

( )
j

V j j
Vh kh


 


                (19)

2.1 Quantum form of the covariant derivative
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2

( )

for

i
j

e
j

j j
D ek k hk






  







 

  

      (20)

In fact 
2

( ) ( ) ( )

2 2

( )

jj j j j
D V e D e V e e Vk k hk kj j j

j
Vj jj j

e V e Vk k h k k hj j



  

 

     


  

  

  
   

     

      (21)

Properties of the covariant derivatives. Given

 (22)

 

The second derivatives of the entropy   can be written in this way

2 2 log log
( )

2
1 1 1

( )
2( )

2 2log log 1 1

2
1 1

=       
2

j j j
p pk k k p

j j j j
k p k p k pj jj

j j j j j j
k p k p k p k pj j

j j j
k p k pjj

  

    

   
       

     
        

  
    

  
  

    

    
 

     

     
     

       

  
 

   

                (23)

2.2 The space of the parameters flat, no curvature when the parameters are independent one

from the others 

22
2

          

jj
i pkk pj j

D ppk k k kk j x j jj
pi i


     

      
 


                   

 
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When the parameters in the density of probability are independent, we have

( , ,.., | , ,...., ) ( | , ,...., )1 2 1 2 1 2

( | ) ( | )..... ( | )1 2

x x x Xj N N N

X X Xj j j N

       

     




                          (24)

In this case, we have 

2
1 1

0
2

2
1

j j j
k p k pjj

and

j j j
k p k pj

  

    

  

   

  
  

   

  


   

                (25)

And for the (24) :

22
1

 

j j jj
k p k ppk j j j

p p
j j j j

p pi i

  
     

    

  

  
       

    

  

              (26)

2 2
1 1

log log
 = =

1
2

2 log1 1
( )            

1

j j
k p k pj j j j j j

p p p p
j j j j
i p i p

j

j j j j
p ppk k

j j j
pi

j

 
       

      

    

   

      
 

 
      

        

   

   


     



        (27)

For the independent parameters we have

2 i
j

D pk k kk
j

 
   

  
  

   
                     (28)
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Given the distribution of probability

2 2( ) ( ) ( )( )1 1 2 2 1 1 2 2( , | , ) exp( [ ]21 21 2

x x x x
x x k

   
  



     
             (29)

Where the quadratic form is  given by  the correlation ellipse (fig.1) between parameters

Figure 1. Correlation ellipse

For the previous density of probability, we have 

2
log

i
j

D pk k kk k
j

  
    

   
   

    
                            (30)

3. Copula definition

Given the joint probability

( , ,...., ) ( , ,...., ) ( ) ( )..... ( )1 2 1 2 1 1 2 2p x x x c F F F p x p x p xn n n n                                       (31)

Now we want to compute a special transformation for which we can eliminate the marginal probabilities
( )jp x  from the previous joint probability. In fact the (1) can be written in this way
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( )
( )

( ) ( ) ( )1 1 2 2( , ,..., ) ( , ,..., ) .....1 2 1 2
1 2

dF xj j
p xj j dx j

and

dF x dF x dF xn np x x x c F F Fn n dx dx dxn





         (32)

Now we make the integral at the left and at the right of the previous equation so we have

( )1 1 ( )1 1.... ( , ,..., ) .... .... ( , ,..., ) ....1 2 1 1 2 10 0 0 0 1

1
( , ,..., ) .... ( , ,..., ) ( ).... ( )1 2 1 2 1 10 0

u uu u dF xn n dF xn np x x x dx dx c F F F dx dxn n n ndx dxn
u un

F u u u c F F F dF x dF xn n n n

   

   

       (33)

Now we have

1

1 1 1
1 2

1 2

( )

( ( ), ( ),..., ( ))

1
.... ( , ,..., ) .... ( , ,...., )1 2 10 0

j j

n

n

u F x

F F x F x F x
u un

c F F F dF dF C u u un n



  





  

          (34)

For two variables we have the composition rule

( , )1,2 1 2C C u u                             (35)

We remark that in the function C we lose the product of the marginal functions ( )j jp x  and we have

only the function 1( ,..., )nC F F  that we denote copula. 

 The Copula theory deals with the  connection  between different  random distributions  or  marginal

distributions [for a general recent scenario see: 7]

In figure 2 we show the probability distribution and its cumulative function F which values u have

homogeneous distribution.

Figure 2.  Dependence between two distribution
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I

Figure 3.  Property of the copula as dependence

In this figure 3,  we show one of the most important  property of copula. When we have individual

different distributions, we know that  dependence between elements can be the same. Now, because

Copula does not deal with the individual distribution, but only  the inter-media dependence the copula

does not change its form but only its intensity as we can see in fig.4:
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Figure 4. Other example of dependence

We remark that 

1
1

1 2

( ,...., )
( ,...., )

...

n
n

n
n

C u u
c u u

u u u


  

               (36)

and

( , ,...., ) ( , ,...., ) ( ) ( )..... ( )1 2 1 2 1 1 2 2p x x x c u u u p x p x p xn n n n                    (37)

3.1 Copula for two photons entangled in opposite direction

By quantum mechanics, we know that the probability for two photons is given by the expression

2( , ) sin ( )1 2 1 2p k                                 (38)

The cumulative joint function is

12 2 2 2( , ) sin ( ) sin [ ( )]1 2 1 2 1 2 1 2 2 12
F k d d k                                (39)

For the marginal cumulative function we have
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12 2 2( ) ( , ) sin [ ( ( ) )]1 1 1 1 12 2 2 2
12 2 2( ) ( , ) sin [ (( ) )]2 2 2 2 22 2 2 2

F F k

F F k

     

     

  

  
                            (40)

Now we change - within the cumulative joint probability - the variables  ( , )1 2   into the variables

( ( ), ( ))1 2F F   so we must solve the equation 

1 1 12 2 2 2 2sin [ ( ( ) )] ( ) sin[ ( ( ) )] ( )1 1 1 1 1 1 1 12 2 2 2 2 2
1 4 12 2 2 ( ) ) 2arcsin( ( ))  arcsin( ( )) 01 1 1 1 1 1 1 12 2 2

16 12( ) arcsin( ( ))1 12 2
1 2

k F or F
k

and F and F
k k

and

F
k

        

       


  


   

    

 


     (41)

And

So we have the copula

16 1 16 12 2( ) arcsin( ( )) ( ) arcsin( ( ))1 1 2 21 2 2 2 22 2( ( ), ( )) sin [ ( )1 2 2 2 2

16 1 16 12 2( ) arcsin( ( )) ( ) arcsin( ( ))2 2 1 12 2 2 22( ) )]                 (43)
2 2

F F
k kC F F k

F F
k k

    
  

    
 

  
 

  


m

m

The copula for discrete values between 0 and 1 for the cumulative marginal functions is given by the

table

1 1 12 2 2 2 2sin [ (( ) )] ( ) sin[ (( ) )] ( )2 2 2 2 2 2 2 22 2 2 2 2 2
1 4 12 2 2 (( ) ) 2arcsin( ( ))  - arcsin( ( )) 02 2 2 2 2 2 22 2 2

16 12( ) arcsin( ( ))2 22 2                            2 2

k F or F
k

and F and F
k k

and

F
k

        

       


  


   

    

  



         (42)
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The  Copula  is  symmetric  and  the  extreme value  is  connected  with  the  classical logic  expression

1 2y x x   which table is

1 2

1 0

1 0 1

0 1 0

y x x

 
     
  

              (44)

 So  y is logic expression for  the  “exclusive or”;  y is true  or  one  or  total  dependence  when the

polarization is opposite and is false (no dependence) when polarization is equal for the two photons.

Between 0 and 1 we have other logic values and degrees of dependence. The logic table 

is topological isomorphic to the copula. The copula C and MM has the same behavior also if the values

are different one from the others. So, for the dependence structure we can take the logic expression

MM and with local deformation we can came back to the original copula.

3.2 Two slits copula and logic equivalence in many valued logic

For the two slits experiment we have the probability 

2( , ) cos ( )1 2 1 2p k                    (45)

With the same method of two photons entangled in opposite direction, we have the copula



14

16 1 16 12 2( ) arccos( ( )) ( ) arccos( ( ))1 1 2 21 2 2 2 22 2( ( ), ( )) sin [ ( )1 2 2 2 2

16 1 16 12 2( ) arccos( ( )) ( ) arccos( ( ))2 2 1 12 2 2 22( ) )]                     (46)
2 2

F F
k kC F F k

F F
k k

    
  

    
 

  
 

  


m

m

Which has the table form

M1

1

0.846

0.7

0.561

0.43

0.307

0.192

0.088

0

0.846

1

0.969

0.899

0.805

0.692

0.56

0.401

0.125

0.7

0.969

1

0.979

0.923

0.839

0.725

0.572

0.25

0.561

0.899

0.979

1

0.982

0.93

0.843

0.708

0.375

0.43

0.805

0.923

0.982

1

0.982

0.927

0.82

0.5

0.307

0.692

0.839

0.93

0.982

1

0.98

0.909

0.625

0.192

0.56

0.725

0.843

0.927

0.98

1

0.973

0.75

0.088

0.401

0.572

0.708

0.82

0.909

0.973

1

0.875

0

0.125

0.25

0.375

0.5

0.625

0.75

0.875

1



























Which have the same form of the equivalent classical logic 1 2y x x  which table is

1 2

1 0

1 1 0

0 0 1

y x x

 
     
  

               (47)

We can compare the copula of the two photons in opposite direction with the copula for two photons in

the same directions  (two slits experiment ). 

4. Copula and dependence to define covariant derivative in quantum mechanics

For

2 2
1 1 1 1

( )
2

2 ( )
( ) ( ( )... ( ) ( )... .... ( ))

1 1

j j j j j j

k p k p k p k p
j j jj

and

cj j j p
c

k p k p k p N Np

     

          

   
       

     

     
   

       

    
  

     

                (48)

and
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2 ( )( )
( )... ( ) ( )... ... ( ) ( )... .... ( )

1 1 1

( ) ( )
( )... ... .... ( ))

1

1

( )1
( ( )... ( ) ( )...

1 1( )... ( )1

c c cj j j pk
k p p kN N N

k p

p kc
N

p k

j j

k p
j

c j kc
k Nc N k

  
           

    

   
   

 

 

  

 
     

    

   
   

    

 

 

 


 

 




( )
.... ( ))( ( )... ( ) ( )... .... ( )

1 1

c j p
c

pN N N
p

 
         



 




 we have

   (49)

5. Zero quantum field of forces and quantum potential

For the Fisher information we have
2 log

[ ]

1
log log

[ ]

j
E ji

j j
E i i



 
 

 



  
 

 

                        (50)

For the average theorem, or theorem of the mass probability we have

2 2log log ( | )
[ ]

1
log log log ( | ) log ( | )

[ ]

cj j
E j ji i

c cj j j j
E i i i i

  

   
     

   

 

    
   

   

                     (51)

Where c is the center of mass or average value. In this situation we have

2 2
1 1 1 1

( ) (( )

( )( )
( )... ... ( ) ( )... .... ( )

1 1

( ) ( )( )
( )... ... .... ( )) ( ( )...

1 1

c c cj j j j j j
jk p k p k p k pj j j j

c cj j pk
p kN Nk p

cp j pckc
kN jp k p

  


          
  

       
  

    
       

     
   

       
  

 
  

  


  
.... ( )

( )( ) ( )
( )... ... ( ) ( )... ... .... ( )))

1 1

jN

c j pk kcjp N Nk p k

  

    
        

  



  


  
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log
 =   

j j
D k k k kk x x

 

 

  
  

   
                 (52)

When the fluctuation near to the average are little we have the gauge relation

2 log
            (53)

i
j j

D pk k k hk
j

 
    

   
   

    

 In this case the field 

[ , ] 0            (54)
,

D D F
k h k h

 

 in fact

[ , ]

log log log log
[( - )( - ) ( - )( - )] 0    (55)

D D V
k h i

j j j j
Vk k h h h h k k i

   

       



      
 

       

Because we have

2 2

0

log log log log
( ( ) ) ( ( ) )

2 log log

2log log log log
0

log

V V
i i

k h h k

V Vj j j ji iV Vh k h k k h k hi i

Vj j iVh k k hi

V V Vj j j ji i iVh k k h h k k hi

j

   
   

       

 

   

   

       


 
 

   
     

   
       

  
  

   

     
    

       
 log log log

0
j j j

h k k h

  

   

  
 

   

    (56)

We can prove the (29) so the field of quantum forces is equal to zero. In the next chapter we show the

connection  between  zero  point  quantum  force  and  quantum  mechanics.  The  previous  covariant
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derivative has a very important relation with quantum potential and quantum mechanics.  In fact we

have the deformation of the derivative for the non- Euclidean geometry by the expression

2 log
        (57)

ixj j j
Apk k k k hxx x x x xj h

 



    
   

     


Where Ah  is like Weyl gauge potential [8, 9]. Now in the classical mechanics the equation of the motion

can be written by the definition of the action

1
[ ]             (58)

2

S S S nS V dtd xi jt m x x


  
  

  

For quantum mechanics, we have a deformation of the momenta for the change of the geometry. We

change the kinetic part  of Lagrangian in analogy to  the Lagrangian for the electromagnetic vector

potential. So we have

1
[ ( ) ]

2

log log1
[ ( ) ]

2

log log1 1
[ ) )]          (59)

22

S nS p p A A V dtd x
i j i jt m

S nk kS p p V dtd x
i j x xt m i j

S n nk kp p V dtd x dtd x
i j m x xt m i j



 


 
 


    


 

      

 
     

The movement of particles in first approximation is given by the classical mechanics where we assume

that the dependence of the particles is so little that we can eliminate it.  With a higher approximation we

can introduce a new term in the kinetic energy  that is proportional to the quantum effect of particle

non-isolation measured by Fisher information [10,11; see also: 12] With the Euler Lagrange minimum

condition we have that the Fisher information or quantum action assumes the minimum value when

0

1
[ ) 0     (62)

2

21 11 1 2
( )            (60)

222 2

S

For

S np p V dtd x
i jt m

so

S S
p p V p p V Q
i j i jm x x x xt m t mi j i j



 

  





  



   
       

    
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Where Q is the Bohm quantum potential that  is a consequence for the extreme condition of Fisher

information (minimum or maximum condition for the Fisher information).  We know that the quantum

potential as real part and the continuous equation as the imaginary part can generate the Schrödinger

equation starting from the Boltzmann entropic geometry. We can also use the Schrödinger equation and

came back  to  the  Fisher  information  and to  the  pure  conditional probability interpretation  of  the

quantum mechanics.

 We know that the term field means a physical system with an infinite number of degrees of freedom.

The generalized coordinates qi  for mechanical system with a finite number of degrees of freedom are

replaced by field functions  ( )xj k  where the variables xk  are continuous variables. In the entropic

approach to quantum mechanics the density of probability assumes a new meaning. So, the density of

probability is a field that generalizes the mechanical general coordinates qi  of the different parts of a

mechanical system. In the quantum mechanics the finite degree of freedom is substitute with the infinite

degree  of  freedom of  the  density of  probability as  a  field that  has new properties  respect  to  the

traditional fields as gravity, electricity and so on. The field of probability is a field of information [13]

6. Non zero field Force (fluctuations) for Boltzmann entropic vector and Casimir force

For the entropic approach, we can assume that the quantum fluctuations are not near to zero [14], so in

this case we have 
2 log1 1

( )
,1

log
( )

,

j j j j iD p ppk kk kk k p
j j j

pi
j

jiK pk k p j

   

       
 






    
     

      




 



           (61)

Where ,
i
k p

  are the Christoffel symbols in the curved parametric space ( , ,....., )1 2 m    . 

For non-zero field quantum mechanics we have a deformation of the momenta for the change of the

geometry so we have 

1
[ ( )( ) ]

, .2

1
[ ( ) ]

. , , ,2

1 log log
[ ( ( ) ) ]

,2

1 1 log
[ ) ( ) ( )

, ,22

S ji nS p p V dtd x
i k p j k pt m

S j ji i nS p p p p V dtd x
i j i k p j k p k p k pt m

S i nS p p K p V dtd x
i j k p xt m x ji

S jn ip p V dtd x K K
i j k p k pmt m





 

   


       




          

  

      

    


log
)]          (62)ndtd x

x xi j


 

For the differential geometry we have the commutator forms
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[ , ]            (63)V R V
       

 

Where the Riemann tensor is

=   -    +  -               (64)R      
              

For the like-Maxwellian Compensative model [15,16, 17] we put the hypothesis that the commutator

will be the Casimir force field. With the double commutator, we have the sources of the quantum

dynamics.

[ ,[ , ]] [ [ , ]] [ , ]( )

( ) ( )                  (65)

K K K

R K R K J K

         
       

           

    
 

Where R is the Riemann Tensor ,  k  is the covariant derivative , K  is the vacuum field and J
are  the  quantum currents  or  sources. For  the  conservation of the quantum current  we have, after

contractions, the equation

1
[ ( ] ( ) 0          (66)

2
R T g T K R K          

 When 0Kk    we have the like  Einstein quantum equations not in the space time but in the space

of the parameters.  Most applications of differential geometry assume that the connection is “torsion

free” that is: vectors  do  not  rotate  during parallel transport.  Because some extensions do  include

torsion,  it  is useful to  see how torsion appears in standard geometrical definitions and formulas in

modern language. The torsion corresponds intuitively to the condition that vectors not be rotated by

parallel transport.  Such a  condition is natural to  impose,  and the  theory of general relativity itself

includes this assumption. However, differential geometry is equally well-defined with torsion as without

it. We define the torsion tensor by the Christoffel symbols in this way

         (67)c c cTab ba ab   

Where 
cTab  is the torsion tensor. In the Boltzmann entropic geometry for quantum mechanics , we are

free to take Christoffel symbols with torsion.

7. Conclusion
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The  key element  of  the  paper  is to  define affine transformations of  the  statistical parameters  and

entropies of the observers (Entropic Transformation ) that perturb the physical system by measure. The

affine transformations define a non- Euclidean geometry of the statistical parameters as deformation of

the original Euclidean space of the entropies. Entropic transformations give the dynamical equation of

the Christoffel symbols for the  non-Euclidean geometry of the stochastic parameters. In the space of

the statistical parameters, derivative is deformed by the particular geometry so we can show that the

new derivative can commute or  not.  By means of the commuting derivative we can find the Bohm

quantum potential and Schrodinger equation.  With non-commuting derivative we can compute new

wave equation for quantum mechanics without  the wave function but only by Entropic principle or

information for quantum phenomena  In conclusion the global interaction of physical objects generates a

stochastic form (diffusion) in structured space by geometrical constrains. The form of the entropy or

information is generated by all mutual dependences of any object in the universe included the human

measures. The Universe itself is not an external object with its law, but it is the result of all possible

interactions that we represent by a geometric form.
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