The 29th Intl Electronic Conference on Synthetic Organic Chemistry

14-28 November 2025 | Online

Convenient Gould-Jacobs synthesis of 4-quinolone core using Eaton's reagent

Daniela S. Mansilla, Silvia E. Asís and Gisela C. Muscia

Universidad de Buenos Aires, Facultad de Farmacia & Bioquímica. Junín 956, Buenos Aires, Argentina

INTRODUCTION & AIM

Naturally occurring or synthetic heterocycles with a quinoline nucleus represent an important source of bioactive compounds. Our research group has described the selective synthesis of 4-methyl-2-quinolone¹ employing the Eaton's reagent, which consists in 7.7 % phosphorus pentoxide dissolved in methanesulfonic acid and has advantages such as controlled reaction conditions and low environmental impact². Gould-Jacobs reaction involves The condensation of aniline 1 and diethyl ethoxymethylidene dimalonate (EMME) 2 to give the intermediate diethyl anilinomethylene malonate 3, which is cyclized upon further heating, usually under drastic conditions, to give ethyl 4quinolone-3-carboxylate 4 (Scheme 1)^{3,4}. In this work, we describe and improved Gould-Jacobs reaction promoted by MW in the first step and employing the Eaton's reagent for the thermal cyclization to afford a series of 6-substituted quinoline-4-ones of pharmaceutical interest.

METHOD

Scheme 1. Gould-Jacobs synthesis of ethyl 4-quinolone-3-carboxylates **4**¹

R + EtO OEt ior ii R OEt NH₂ + EtO OEt
$$\frac{1}{1}$$
 OEt $\frac{1}{1}$ OET \frac

¹Reagents and conditions in this work: (i) neat, MW, 7 min or (ii) EtOH, reflux, 2 h; (iii) Eaton's reagent, 80-100 °C, 2 h.

Synthesis of diethyl anilinomethylene malonate 3a-3i

Method i: A neat mixture of 2 mmol of 4-substituted aniline and 2 mmol of EMME was subjected to MW irradiation at 170 °C and 850 W for 7 min. The mixture was cooled to room temperature to give a solid product, which was then crystallized from the appropriate solvent. Method ii: A mixture of 3 mmol of 4-substituted aniline and 3 mmol of EMME was refluxed in 10 mL anhydrous EtOH for 2 h. The mixture was cooled to room temperature to give a solid product. The spectral characteristics of compounds **3a-3e** and **3g-3i** are identical to the reported data. Yields and m.p. values are depicted in Table 1.

Synthesis of ethyl 4-quinolone-3-carboxylates 4a-3h

A mixture of 2 mmol of derivative 3 and 2 mL of Eaton's reagent was heated at 100 °C for 2 h. The reaction mixture was cooled to rt and then poured into a saturated NaHCO $_3$ solution. The product was filtered off, washed, and then crystallized from EtOH.

RESULTS & DISCUSSION

Table 1. Comparative yields for the synthesis of anilinomethylene malonates **3a-3i** and their melting points values.¹

Entry	Compd.	R	% Yield MW	% Yield EtOH	m.p. °C ²
1	3a	Н	50	60	43-45
2	3b	CF ₃	40	62	88-89
3	3c	F	15	25	66-68
4	3d	CI	15	74	76-80
5	3e	SO ₂ NH ₂	40	75	148-150
6	3f	SO_2NH CH_3	81	60	166-168
7	3g	$SO_2NH - \langle S \rangle$	d^3	77	168-169
8	3h	CH ₃	75	80	43-45
9	3i	NO_2	80	63	130-132

¹Purified products; ²physical data according to literature, except the novel 3f; ³decomposes after 5 min.

For the cyclization step to the quinoline-4-one **4**, high reaction temperatures were required when diphenyl ether was the solvent as well as harsh conditions, such as PPA/POCl₃ at 75 °C for 12 hours, Dowtherm or flash vacuum pyrolysis (FVP).

Therefore, the intermediate products **3a-3i** reacted with Eaton's reagent at 100 °C for 2 hours. An average yield of 60% was obtained for the quinoline-4-ones **4a-4h**, which were further crystallized from EtOH, and their physical data analyzed and compared with the literature. Derivative **4i**, possessing a 4-nitro substituent, could not be isolated. The dark-colored solid obtained after isolation consisted of a mixture of products that were difficult to purify.

CONCLUSION

It was possible to extend the use of Eaton's reagent in the Gould-Jacobs reaction to prepare structures with a 4-quinolone skeleton, which also represent valuable starting materials in the search for new antimicrobial agents.

REFERENCES

- 1. Muscia, G.C. et al. Selective synthesis of the precursor of bioactive compounds 4-methyl-2-quinolone using Eaton's reagent. *Av. Cien. Ing.* **2019**, *10*, 37-42.
- 2. Eaton, P.E. et al. Phosphorus pentoxide-methanesulfonic acid. Convenient alternative to polyphosphoric acid. *J. Org. Chem.* **1973**, *38*, 4071-4073.
- 3. Gach-Janczak, K. et al. Quinolin-4-ones: Methods of Synthesis and Application in Medicine. *Molecules* **2025**, *30*, 163.
- 4. Gould, R.G.; Jacobs, W.A. The synthesis of certain substituted quinolines and 5,6-benzoquinolines *J. Am. Chem. Soc.* **1939**, *61*, 2890-2895.