The 29th Intl Electronic Conference on Synthetic Organic Chemistry

14-28 November 2025 | Online

Therapeutic Potential of 1-Deazapurines as Alpha-Glucosidase Inhibitors: Molecular Docking and Pharmacokinetic Evaluation

<u>Faiza Boukli Hacene¹</u>, Hocine Allali^{2,*}, Sabri Ahmed Cherrak³, Wassila Soufi⁴, Said Ghalem¹

1 Laboratory of Natural and Bioactive Substances (LASNABIO). Abou Bekr Belkaïd University. P.O. Box 119, Tlemcen 13000, Algeria;

²Department of Chemistry. Faculty of Sciences. Abou Bekr Belkaïd University. P.O. Box 119. Tlemcen 13000. Algeria;

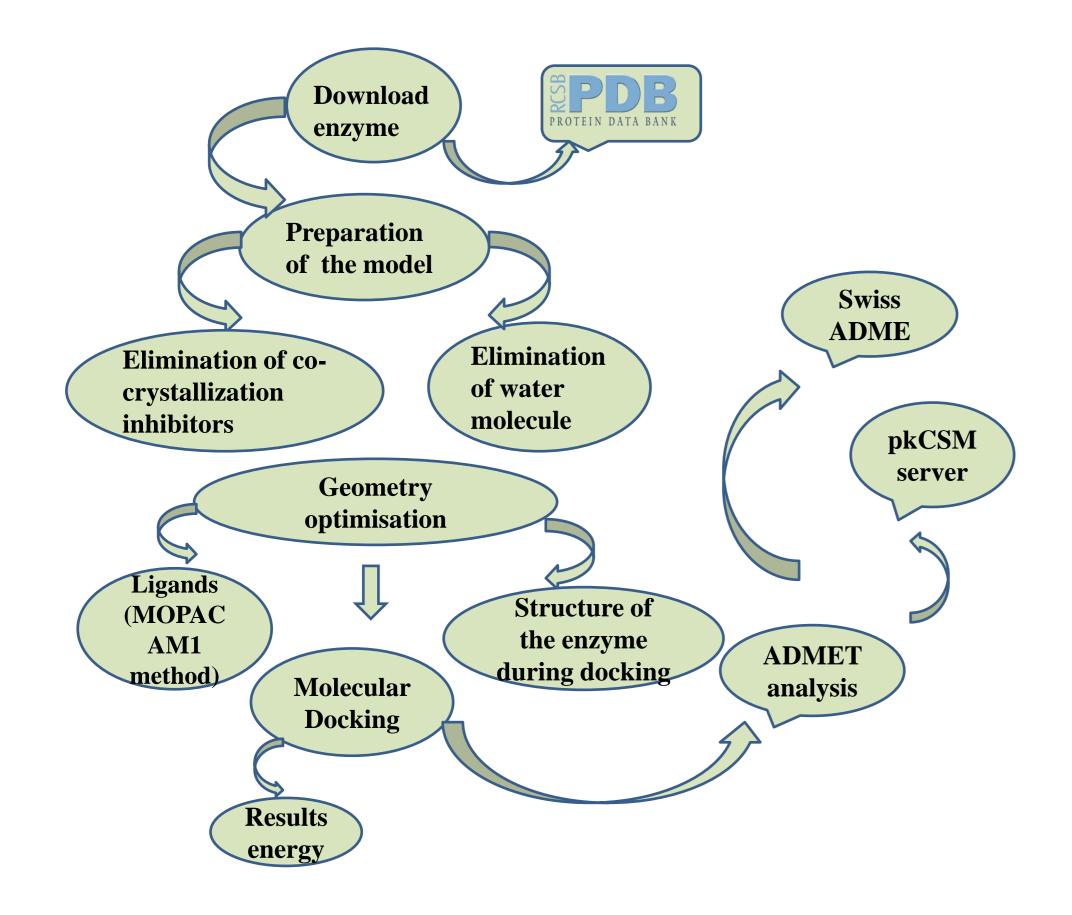
³ Laboratory of Physiology, Physiopathology and Biochemistry of Nutrition. Abou Bekr Belkaïd University. P.O. Box 119, Tlemcen 13000, Algeria;

• ⁴Mustapha Stambouli University. P.O. Box 305, *Mascara* 29000, Algeria;

•Correspondence: hocine.allali@univ-tlemcen.dz

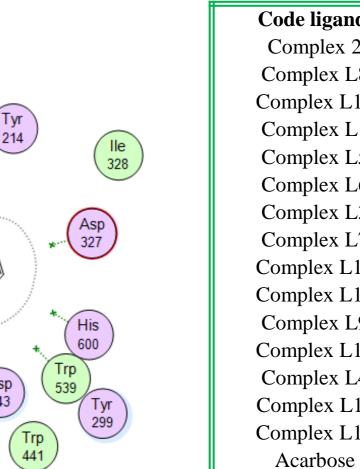
INTRODUCTION & AIM

Type 2 diabetes mellitus (T2DM) is the predominant form of diabetes, characterised by chronic hyperglycaemia that predisposes patients to cardiovascular disease, renal dysfunction, neuropathy, and retinopathy.


Among therapeutic strategies, alpha-glucosidase inhibitors (AGIs) are widely used to slow carbohydrate hydrolysis in the gastrointestinal tract, thereby moderating glucose absorption and postprandial glycaemia [1].

We aim to identify among the fifteen derivatives of 1-deazapurines the best complexs with strong binding affinity, assess stability within the enzyme active site, and predict pharmacokinetic suitability compared with existing therapeutic options. Computational techniques—molecular docking, molecular dynamics, and ADMET analyses—were employed

METHOD


Protein and ligand preparation: The crystal structure of alpha-glucosidase (PDB) ID: 3L4Y; resolution 1.80 Å) was retrieved from the Protein Data Bank.

Fifteen derivatives of 1-deazapurines (compex 1to15) were designed and sketched using MOE 2014 software [2].

RESULTS & DISCUSSION

(A)3L4Y_L14 (Best complex)

Code ligand Score (kcal/mol) Complex 2 -3.6741Complex L8 -4.2295 Complex L12 -4.4261 Complex L1 -4.5406 Complex L5 -4.7096 Complex L6 -4.727 Complex L3 -4.9204 Complex L7 -4.9733 Complex L15 -5.3025 Complex L13 -5.3677 Complex L9 -5.4446 Complex L10 -5.4800 Complex L4 -5.5403 Complex L11 -5.703 Complex L14 -6.1247 -5.6234

Table: Score energy of differents complexs

✓ ADMET data reinforce the view that a subset of compounds, notably L14 and L11, combine high enzyme affinity with favourable pharmacokinetic behaviour.

Molecular dynamics simulations

Thr 204

The Molecular dynamics (MD) simulations were conducted on the three top-ranked ligands over a 100-ns timescale.

- ✓ Root mean square deviation (RMSD) trajectories revealed that L14 and L11 complex displayed a stable trajectory, in contrast to L4, which showed more significant fluctuations.
- ✓ Hydrogen-bond analysis showed L14 was maintaining a consistent number of bonds (0–1), while L11 exhibited a slightly higher range (0–2).
- ✓ The radius of gyration (Rg) and solvent-accessible surface area (SASA) values indicated that the ligands did not induce significant structural changes in the protein.
- ✓ The L11 complex demonstrated the lowest SASA value, suggesting a more compact and less solvent-exposed structure compared to L14 and L4.
- ✓ The MD data validate the docking predictions and reinforce the position of both L14 and L11 as the most promising lead candidates [5].

Pharmacokinetic predictions and ADMET profile

- ✓L14 and L11 adhered to both Lipinski and Veber's rules, suggesting their suitability for oral bioavailability.
- ✓ The BOILED-Egg model positioned L14 and L4 in the "white region", reflecting good human intestinal absorption and a limited risk of blood-brain barrier penetration an advantageous property for antidiabetic agents, as central side effects are undesirable [3].
- ✓ Toxicity analysis further indicated low hepatotoxicity and mutagenic risks for L14 and
- L11, in contrast to some derivatives bearing bulky aromatic substituents [4].

CONCLUSION

The computational evaluation of 1-deazapurine derivatives against α-glucosidase revealed that a subset of compounds, particularly L14 and L11, exhibit strong binding affinities, stable ligand-enzyme interactions, and favourable pharmacokinetic predictions. Molecular dynamics confirmed the persistence of key hydrogen bonds, while ADMET analyses highlighted their suitability for oral administration with limited toxicity risks. These outcomes suggest that selected deazapurines represent promising scaffolds for the design of novel α-glucosidase inhibitors with potential applications in type 2 diabetes management. Nonetheless, experimental validation remains essential to confirm efficacy and safety, and future optimisation may enhance potency and broaden therapeutic relevance.

FUTURE WORK / REFERENCES

- [1]- Maurya, A.K.; Mulpuru, V.; Mishra, N. Discovery of Novel Coumarin Analogs against the α-Glucosidase Protein Target of Diabetes Mellitus: Pharmacophore-Based QSAR, Docking, and Molecular Dynamics Simulation Studies. ACS Omega 2020, 5, 16700–16716. https://doi.org/10.1021/acsomega.0c03871
- [2] Molecular Operating Environment (MOE), Chemical Computing Group Inc.: Montreal, QC, Canada, 2014.
- [3]-Ogboye, R.M.; Patil, R.B.; Famuyiwa, S.O.; Faloye, K.O. Novel α-amylase and α-glucosidase inhibitors from selected Nigerian antidiabetic plants: an in silico approach. J. Biomol. Struct. Dyn. 2021. https://doi.org/10.1080/07391102.2021.1883480
- [4]-Janiak, C. A critical account on π - π stacking in metal complexes with aromatic nitrogen-containing ligands. J. Chem. Soc. Dalton Trans. 2000, 21, 3885–3896. https://doi.org/10.1039/b0030100
- [5]-Burley, S.K.; Petsko, G.A. Aromatic-aromatic interaction: a mechanism of protein structure stabilization. Science 1985, 229, 23–28. https://doi.org/10.1126/science.3892686