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Introduction
In this study, we examine the applicability of the Dirac–Fock plus Core-Polarization (DFCP) method [1,2]
to atomic characteristics calculations. We present results for static electric-dipole polarizability, the thermal
Stark shift and the Bethe logarithm. The evaluation of these quantities requires summation over intermediate
discrete states and integration over continuum states. While such summations can be carried out directly
and with controlled convergence in exactly solvable systems (e.g., hydrogen-like atoms and ions), the situation
becomes significantly more complex for many-electron atoms and ions due to the difficulty of reproducing the
complete atomic spectrum.

The values of these quantities can be used in precision spectroscopy, in the development of atomic clocks,
metrology, etc. The DFCP method is a semi-empirical approach based on the use of model potential (core
polarization potential). We motivate the use of this method by the fact that it allows us to effectively combine
the accuracy of calculations with the time required to calculate the characteristics of atoms.

In this paper, we present our version of this approach based on the use of a local version of the Dirac-
Hartree-Fock potential [3]. Hereafter, we refer to such a method as LDFCP.

Method LDFCP
The stationary Dirac equation in the case of a central field V (r) (ℏ = c = 1):

(−iα · ∇+ βm+ V (r))ψn(r) = εnψn(r). (1)

Solution of equation:

ψ(r) =
1

r

(
g(r) Ωκm(n)
if(r) Ω−κm(n)

)
. (2)

where κ = l(l + 1)− j(j + 1)− 1
4 .

The solution of the Dirac equation with a finite basis constructed with B splines [4] using the dual kinetic
balance method, DKB [5]. Potential V (r) is:

V (r) = VLDF(r) + VCP(r) , (3)

where VLDF(r) - the local version of the Dirac-Hartree-Fock potential [3]. VCP(r) - the semi-empirical core
polarization potential:

VCP(r) = − αc

2 r4
(
1− e−r6/ρ6

κ
)
, (4)

αc - the static dipole polarizability of the core and ρκ - is the radial cutoff parameter, to be adjusted empirically
(depends on l and j).

Li Na K Rb Cs Fr

0.192486 0.9947 5.354 9.1 15.81 20.4

Table 1: Static core polarizability values used in this work, a.u. [6]

Polarizabilities
The polarizability of an atom can be considered as a measure of the response of the charge cloud to an external
electric field.

Scalar polarizability:

α0 =
2

3(2ja + 1)

∑
n

|⟨a∥d∥n⟩|2

En − Ea
(5)

Tensor polarizability:

α2 = 4

(
5ja(2ja − 1)

6(ja + 1)(2ja + 1)(2ja + 3)

)1/2 ∑
n

(−1)ja+jn

{
ja 1 jn
1 ja 2

}
|⟨a∥d∥n⟩|2

En − Ea
(6)

Table 2: Scalar polarizability for alkali atoms, a.u. Blue values are from Ref. [6].

n n2S n2P1/2 n2P3/2 n2D3/2 n2D5/2

Li
2 164.0 126.8 126.8

164.0 126.89 126.91
3 4128.0 27466 27470 -14456 -14458

4130.2 28239 28237 -14916 -14914

Na
3 161.6 360.5 362.1 6438.0 6413.0

162.44 359.94 361.63 6419.7 6395.3
4 35336 262988 263020 4374090 4386700

35281 27326 273230 4923700 4936000

K
3 1429 1415

1422 1408
4 287.0 607.0 618.0 35897 35702

290.25 602.1 612.7 35990 35810

n n2S n2P1/2 n2P3/2 n2D3/2 n2D5/2

Rb
4 586.0 553.0

587.0 553.0
5 314.7 807.0 869.0 17806 17422

318.28 805.0 868.0 18120 17740

Cs
5 -327.0 -423.0

-328.0 -433.0
6 396.7 1307.0 1607.0 -7030 -9837

399.57 1343 1655 -5620 -8330

Fr
6 -249.0 -584.0

-259.0 -613.0
7 316.0 1173 2178 -1979 -9224

316.3 1177 2213 -2500 -7420

Table 3: Tensor polarizability for alkali atoms, a.u. Blue values are from Ref. [6].

n n2P3/2 n2D3/2 n2D5/2

Li
2 1.53

1.61
3 -2087 11078 15828

-2167 11400 16283

Na
3 -89.25 -3587 -5090

-88.38 -3574.6 -5071.8
4 -174.8 -149169 -212575

-167.7 -149260 -212740

K
3 -487.0 -678.0

-484.0 -674.0
4 -111.7 -7775 -10908

-108.7 -7810 -10960

n n2P3/2 n2D3/2 n2D5/2

Rb
4 -58.0 -35.0

-59.0 -35.0
5 -169.1 -1205 -1086

-166.6 -1310 -1240

Cs
5 346.0 649.0

356.0 675.0
6 -260.0 9364 18425

-262.0 8736 17290

Fr
6 235.0 863

233.0 890
7 -454.0 4546 19882

-453.9 4032 18480

Stark Shift of atomic level induced by Blackbody radiation
The effect of blackbody radiation field on an atom leads to a shift in the energy level (dynamic Stark effect)
[7]:

∆EBBR
a =

2

3π (2ja + 1)

∑
n

P.V.
∫ ∞

0

dωnβ(ω)ω
3|⟨a|d|n⟩ |2

[
1

En − Ea + ω
+

1

En − Ea − ω

]
(7)

where nβ(ω) = 1/[exp(βω)− 1] - Planck distribution, β = 1/kbT (kb - Boltzmann constant, T - temperature),
ω - the frequency of the thermal photon.

Table 4: Thermal Stark shifts at 300 K (Hz). , Blue values are from Ref. [7].

n n2S n2P1/2 n2P3/2 n2D3/2 n2D5/2

Li
2 -1.41 -1.093 -1.094

-1.43 -1.145
3 -38.1 46.56 46.57 -45.66 -45.64

-38.62 50.80 -47.75

Na
3 -1.388 -3.118 -3.133 -61.93 -61.95

-1.389 -2.985 -2.998 -61.24 -61.25
4 -27.75 46.32 46.15 14.48 13.20

-27.57 44.13 43.94 15.73 14.46

K
3 -13.03 -12.88

-16.47 -16.30
4 -2.435 -5.251 -5.345 -160.5 -159.5

-2.528 -5.370 -5.471 -171.9 -170.8

n n2S n2P1/2 n2P3/2 n2D3/2 n2D5/2

Rb
4 -5.088 -4.787

-6.467 -6.975
5 -2.645 -7.004 -7.553 -166.5 -160.1

-2.789 -7.511 -8.127 -188.7 -181.4

Cs
5 3.517 4.649

5.497 5.315
6 -3.300 -11.98 -15.24 -65.64 -102.0

-3.589 -14.85 -17.24 -70.41 -99.18

Fr
6 2.89 6.83

7 -2.558 -10.43 -21.51 -60.98 -144.3

The Bethe Logarithm
The contribution of intrinsic energy to the energy level shift can be estimated by calculating the Bethe log-
arithm for nonrelativistic systems. In the lowest order for a hydrogen-like atom in the s-state, the one-loop
self-energy correction can be calculated using the following formula [8]:

∆ESE
a =

4Z

3
α3

(
19

30
− 2 lnαZ − ln k0

)
|Ψ(0)|2 (8)

ln k0 – the Bethe logarithm:

ln k0 =

∑
n

|⟨a|d|n⟩|2(En − Ea)
3
ln |En − Ea|∑

n

|⟨a|d|n⟩|2(En − Ea)
3

ln k0 =

∑
n

|⟨a|p|n⟩|2(En − Ea) ln |En − Ea|∑
n

|⟨a|p|n⟩|2(En − Ea)
(9)

in length and velocity guage respectively.

Table 5: Bethe logarithm for ground states atoms and ion

Li (2s) Be+ (2s) Na (3s) K (4s) Rb (5s) Cs (6s)

LDFCP (relativistic)
5.23 6.09 6.26 7.41 8.34 8.9

LDF (non-relativistic)
length 5.192 5.71 7.63321 8.65955 9.91856 10.6501
velocity 5.19211 5.70213 7.63317 8.65954 9.91856 10.6501

local Kohn-Sham (non-relativistic)
length 5.13128 5.673 7.6269 8.6596 9.91972 10.6516
velocity 5.13077 5.6693 7.62688 8.6595 9.91971 10.6516

local CH (non-relativistic)
length 5.187 5.72 7.64526 8.67203 9.92633 10.6562
velocity 5.18709 5.70948 7.64523 8.67202 9.92633 10.6562

5.17817[9] 5.75167[10] 7.770[11]

Conclusion and Discussion
• Method LDFCP provides us with a complete spectrum of the energies and wave functions of the effective

one-particle Hamiltonian
• Calculated polarizabilities show good agreement with literature data
• It is assumed that our values of the thermal Stark shifts are more accurate
• The comparatively low computational and time costs of the LDFCP method
• The values of the Bethe logarithm within LDFCP cannot be considered reliable in relativistic calculations
• Applicable for precision atomic physics calculations
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