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Abstract: This lecture is a short review on the role entropy plays in classical dissipative 

dynamics formulated in terms of Leibniz bracket algebræ (LBA). While conservative 

dynamics is given an LBA formulation in the Hamiltonian framework, with total energy H 

generating the motion via classical Poisson brackets or quantum commutation brackets, an 

LBA formulation can be given to classical dissipative dynamics through the metriplectic 

bracket algebra (MBA): the conservative component of the dynamics is still generated via 

a Poisson algebra by the total energy H, while S, the entropy of the degrees of freedom 

statistically encoded in friction, generates dissipation via a metric bracket. Here a 

(necessarily partial) overview on the types of systems subject to MBA formulation is 

presented, and the physical meaning of the quantity S involved in each is discussed. At the 

end of this collection of examples, the fact that dissipative dynamics may be constructed 

also in the absence of friction with microscopic degrees of freedom is stressed. This 

reasoning is a hint to introduce dissipation at a more fundamental level. 
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1. Introduction 

When the Organizers of the 2nd International Electronic Conference on Entropy and Its 

Applications invited me to submit a keynote lecture in the section of Physics, I was not only honoured 

and delighted for their kindness, but also impressed by the wide choice of things about “entropy” one 
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could discuss. My choice has been to report on the role that this still mysterious object, the entropy, 

seems to play in the context of classical dissipative dynamics represented through bracket algebræ. 

Entropy, indeed, is known to play the role of a thermodynamic state function, to measure the 

degradation of the energy transferred, as well as the spread of it through microscopic degrees of 

freedom; close or far relatives of entorpy are employed to quantify ignorance or unpredictability, and 

even to track causality in the complex relationships of interacting systems. In the context of algebrized 

dynamics of classical dissipative systems, entropy plays the same role of energy, when the latter wears 

the costume of the Hamiltonian H: entropy contributes to generating the motion of the system, even if 

through a mechanism different from the Hamiltonian one. According to metriplectic formalism, the 

subject of this lecture, the evolution of a classical system with dissipation is a 1-parameter (time) semi-
group resulting from the exponentiation of the sum of the symplectic bracket { }H...,  ruled by H, plus 

a metric bracket ( )S...,  ruled by entropy S.  

{ } ( )( )SHMotion ..., ..., exp +=   

In this way entropy enters directly and vividly in the shoes of εν τροπη, a Greek phrase translatable as 

“the inner transformer”, to which the physical function owes its name. Impressively, while 

Hamiltonian and symplectic machinery just produce time-reversible changes, what entropy does with 

metric algebra is generating irreversible transformations. To the opinion of the Author of this lecture, 

this fact is extremely intriguing and possibly related to the long-standing question of the origin of 

irreversibility in Physics. I just wrote “possibly related to”, that does mean “resolving”: however, I 

think that students or researchers aiming at contributing to the work about the just mentioned dilemma 

should have some knowledge of metriplectic formalism. 

In this lecture I will discuss about dissipative complete systems, i.e. pieces of the universe that 

conserve their energy while increasing their entropy during their evolution, i.e. essentially isolated 

systems: so, I apologise in advance with all those who work on the metriplectic formalism applied to 

non-isolated (e.g., non energy-conserving) systems: those systems are extremely important examples 

that, however, I had not to mention here, to keep this lecture not uselessly long. 

The presentation is articulated as follows. 

In Section 2 the concept of dynamics algebrization through Leibniz bracket algebræ is reported, and 

the usefulness of representing dynamics via bracket algebræ highlighted. Hamiltonian systems and 

metric dissipative systems are recognized among these dynamical theories. 

Section 3 is the core of the keynote lecture: the concept of complete metriplectic system is 

described, and the relationship between dissipation and friction is discussed. In particular, it is stressed 

how it is possible to construct dissipative dynamics even in the absence of “explicit friction” via 

metriplectic algebra. The student will find § 2 rich of examples, taken for relatively elementary 

Physics, to get acquainted with metriplectic formalism applied to isolated systems. 

Section 4 is finally devoted to some final considerations on the potentiality and meaning of 

metriplectic formalism. 
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2. Leibniz Bracket Algebra and Dynamics 

A Leibniz bracket algebra is defined by two elements: a manifold M, on which the space of (real) 
smooth functions ( )R,MC∞  is defined, and a ( ) ( ) ( )RRR ,,, MCMCMC ∞∞∞ ×   map, namely the 

bracket ( )L.,. , that associates to two functions f and g in ( )R,MC∞  a third smooth function  

( ) ., Lgf=  (1) 

The bracket must have the following properties [1]: 
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where iλ  and jμ  are arbitrary real coefficients. The properties (2) make the Leibniz bracket derivative 

in both its arguments. 

If one of the two functions f and g defining ℓ in (1) is fixed, let us indicate it as F, then the 
application ( )L.,F  maps ( )R,MC∞  onto vector fields on M: indeed the map 

( )L

def

, FffX F =  (3) 

does have all the properties of a vector. The vector field FX  in (3) defines a flux throughout M, and 

then a dynamics of any variable: this observation is the essence of Leibniz dynamics, or dynamics on 
Leibniz algebræ. The function ( )R,MCF ∞∈  is referred to as Leibniz generator of the dynamics given 

by FX . In a more physical way, defining a scalar evolution parameter t, it is possible to assign the 

dynamics of functions ( )R,MCf ∞∈  by stating: 

( ) ,, LFff =  (4) 

being dt
dff = . Provided M is the phase space of a physical system, the ODE (4) is the equation of 

motion of any observable as it descends from the motion of the system configuration through it. Before 

moving on, it is important to stress that a dynamics expressed as in (4) reinterprets the evolution as a 

transformation of functions on M, since infinitesimal variations of an observable is understood as 
( ) tFff δδ L,= : this is the exquisite idea of algebrizing dynamics, i.e. reducing the evolution (with 

time) to a set of algebraic transformations [3]. Next to this, there comes the taxonomy of algebraic 

structures describing “chains of transformations”, in particular groups and semigroups [2]. 

In order to have a more concrete taste of what Leibniz dynamics is, consider M as described by a 

(global) chart of real coordinates, so that a (not necessarily finite…) collection of dynamical variables 
x describes each position in M; hence, if the symbol ixi ∂

∂=∂  is used to indicate the derivative with 

respect to the i-th component of x, the Leibniz bracket ( )L, gf  can be calculated as 
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( ) ( )( ) ( ) ( ) ( ),, L xxxxx gfLgf ji
ij ∂∂=  (5) 

being ( )xijL  a smooth rank-2 tensor mapping M into local MM dimdim ×  matrices. A Leibniz bracket 

is hence assigned as the tensor field ( )xijL  is given, whereas in order for a Leibniz dynamics to be 

assigned one also needs a dynamical generator ( )xF  as in (4). Note that in (5) the repeated indices in 

contravariant position are summed on, as throughout the whole lecture.  

Some advantages appear in formulating the dynamics of a system in terms of Leibniz brackets as in 

(4). First of all, one has covariance of equations under diffeomorphisms of M. Indeed, considering (5), 

and provided the evolution parameter t does not depend on the coordinate system on M, if the 

observables f and g are “scalar” functions, the expression 

FfLf ji
ij ∂∂=  (6) 

is invariant under changes of coordinates in M. This means that if the Physics of a system can be 

reformulated via a Leibniz algebra its equations of motion have a form independent of the choice of 

how to describe the phase space. Moreover, if instead of f one inserts the k-th component of x in (6), 

the relationship 

FLx j
kjk ∂=  (7) 

is obtained, describing just “the motion of the system” through its phase space M. This expression 

indicates that the velocity of the system across M, of components kx , transforms under 

diffeomorphisms as the 1-form kdx , i.e. it is a proper vector. 

The other important advantage in expressing dynamics through a bracket algebra is that the 

symmetries of the dynamics become apparent. Indeed, from equation (6), any physical quantity f the 

gradient of which is a null mode of L is conserved throughout the motion:  

.00 ==∂ ffL k
kj   (8) 

If so, then f has null bracket with any other observable:  

( ) ( ).,0,0 L RMCggffL k
kj ∞∈∀==∂  (9) 

Of course, in order for f to be constant, it is enough that it has null bracket with the dynamics 

generating observable F:  

( ) .00, L == fFf   (10) 

In general, all the observables with zero bracket with F are constant. 

About the generating function F, its mathematical aspect determines the possible steady states of 

the system: indeed, thanks to (6) and (7), one may state 

( ) ( ) ( ) .0,00 000 ===∂ xxx fxF k
j

  (11) 

If the system is abandoned with null velocity precisely at a point 0x  where the gradient of F vanishes, 

then it does not move away from there (of course, the stability of such a stationary point is another 

matter). Note that equation (11) does not exclude that other points are stationary configurations of the 

system in M: instead, points with null gradient of F represent the steady points in M of the system, if 

the tensor ijL  is non singular. 
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The generator F undergoes the same Leibniz dynamics as in (6): the relationship 

FFLF ji
ij ∂∂=  

may yield conservation, decrease or increase of F, depending on the algebraic local characteristics of 

the tensor L: where the tensor is semidefinite positive or negative, then F will locally increase or 

decrease, being 0≥F  or 0≤F  respectively. 

2.1. Hamiltonian Systems and Poisson Algebræ  

Fundamental Physics is expressed in terms of a Leibniz algebra: in particular, as the Classical 

Analytical Mechanics and then Quantum Mechanics teach, the microscopic fundamental systems in 

Physics are considered Hamiltonian systems, for which a Hamiltonian observable H is written, and the 

dynamics is generated through Poisson brackets. Indeed, Poisson brackets are an example of Leibniz 

algebra [5]. 
Poisson brackets, that are indicated here as { }.,. , show all the properties (2); moreover, they are anti-

symmetric and satisfy the Jacobi identity: 

{ } { } ( )
{ }{ } { }{ } { }{ }




=++
∈∀−= ∞

.0,,,,,,

,,,,,

fhggfhhgf

MCgffggf R
 (12) 

When the equation (5) is written for Poisson brackets 

( ) ( ){ } ( ) ( ) ( )xxxxx gfJgf ji
ij ∂∂=,  (13) 

one then assigns suitable properties to the tensor J so that the relationships (12) are satisfied. In 

particular, its anti-symmetric nature jiij JJ −=  and a differential relationship corresponding to the 
Jacobi identity 0=∂+∂+∂ ki

h
jhij

h
khjk

h
ih JJJJJJ  are required for J to define a Poisson bracket [4]. 

The dynamics generator for Hamiltonian systems is indicated as H, the Hamiltonian. From the 

relationship 

{ }, , Hff =  

reading HJx j
iji ∂=  for the dynamical variables describing the state of the system, and due to the anti-

symmetric property of { }.,. , one has 

.0=H  (14) 

Equation (14) is simply the energy conservation: the dynamics generator of a Hamiltonian system is 

conserved throughout the motion. Examples of a Hamiltonian system are not provided here, but 

resumed in § 3 (besides being very abundant in literature). 

Observables in Hamiltonian systems fulfilling the condition (8) and (9), that are written here as 

{ } ( ),,0,0 RMCggffJ k
kj ∞∈∀==∂  

are referred to as Casimir observables [4]: this name unveils a relationship, indeed, between Poisson 

bracket algebræ and the world of Lie groups, where a Casimir is a fundamental algebraic invariant of 

the group algebra, depending on the algebra elements themselves. In the context of Hamiltonian 

systems the Leibniz brackets at hand satisfy (12), then they show the same structure as a Lie algebra, 

hence the name of functions having null Poisson bracket with any other observable. By the way, for 
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suitable expressions of the tensor ijJ  the expression (13) may reproduce the generating algebra of an 

otherwise known Lie group (in this case one speaks about Poisson-Lie algebra). 

Due to the properties of Poisson brackets, the Hamiltonian systems trajectories in M cannot 

converge to an attracting point, or become confined to an attractor; instead, trajectories of Hamiltonian 

systems are either unbounded, or they “eternally” turn, regularly or not, without ever “stopping” at a 

point. In particular, one may state that Hamiltonian systems do not admit asymptotically stable 

equilibria. This is why Hamiltonian dynamics is perfect to describe the evolution of “immutable” 

systems: they may just redistribute energy among their degrees of freedom in a reversible way, as in 

the case of an ideal pendulum that continuously turns its gravitational energy into kinetic one and then 

backwards, but cannot “bury” or “forget” energy in a definite form forever. This means that their 

trajectories throughout M could be physically swept backward while the system remains perfectly 

isolated. 

2.2. Dissipative Systems and Metric Algebræ 

Now, suppose the tensor L in (6) to be a semimetric tensor G, i.e. a symmetric, semi-definite (e.g., 

positive) tensor:  

( ) ( ).,,0,/, RMCgfffGGGgfGgf ji
ijjiij

ji
ij ∞∈∀≥∂∂=∂∂=  (15) 

No Jacobi identity is satisfied by such a bracket. The bracket ( ).,. , referred to as (semi)metric bracket, 

is a type of Leibniz bracket quite different from Poisson algebræ [6]. 
Once a generating function ( )xQ  is defined so that the dynamics of the system is governed by  

( ),,, QffQGx j
iji =∂=   (16) 

it is possible to make some statements about this particular kind of system. 

The essential fact to pick up in this discussion is that the function generating the dynamics, i.e. the 

Q in (16), is not constant; in particular, if G is a semi-definite positive tensor, then Q tends to grow 

monotonically along the evolution 

( ) :0, ≥= QQQ  (17) 

it is  possible to show that isolated maxima of Q are asymptotically stable equilibrium points. This is 
readily proved (see [6]) realizing that, thanks to (17), Q is a Lyapunov quantity, so that points 0x  such 

that ( ) 00 =∂ xQi  are places towards which the motion (16) will converge. If G were a semi-definite 

negative tensor, equally some Q’ could be defined to play the opposite role, i.e. that of a monotonically 

decreasing quantity, and the asymptotically stable equilibrium points would then be its minima. 

It is very important to have asymptotically stable equilibria into which trajectories converge, 

because then the system may be used to represent a dissipative process: dissipation drives systems in 

different states of motion to converge to a steady state. This steady state is characterized by either a 

minimum of non-thermal energy (for open systems the energy of which is drained by friction) or a 

maximum of entropy (for closed “complete” systems obtained including the degrees of freedom 

responsible for dissipation, see § 3): in both cases one may use the quantity monotonic in time to define 

a Leibniz dynamics representing the system. As a consequence, metric dynamics is perfect to mimic 

systems evolving in an irreversible way, for which the energy is transferred from a form into another 

and cannot come back by virtue of the same equations of motion. In other words, metric systems evolve 



 7 

 

irreversibly and age (their only feasible history is that making Q grow, or decrease, forever, according 

to the sign of Gdet ). While Hamiltonian systems have the conservation of energy as their pivoting 

principle, metric systems have the increase of entropy as their guiding law. Of course, the most 

complicated question is what interpretation one should give to the concept of “entropy”. 

3. Complete Metriplectic Systems 

In § 2.1 Leibniz systems have been described with the tensor JL =  in (8) anti-symmetric, and 

satisfying the Jacobi identity; in § 2.2, instead, the case of Leibniz dynamical systems with tensor 

GL =  symmetric, and semi-definite, is discussed. In general, the structure described in § 2 has an L 

that is neither symmetric nor antisymmetric, and is composed by both these two parts: 

.,/ baabbaab GGJJGJL =−=+=   

If the anti-symmetric part J is a Poisson tensor satisfying the relationship 

,0=∂+∂+∂ ki
h

jhij
h

khjk
h

ih JJJJJJ   

namely the Jacobi identity, and if G is semi-definite (for instance, positive semi-definite) 

( ),,0 RMCfffG ji
ij ∞∈∀≥∂∂  (18) 

then the Leibniz system with bracket 

( ) ( ) ( ) ( )( ) ( ) ( ),, xxxxxx gfGJgf ji
ijij ∂∂+=  (19) 

is referred to as metriplectic system, reminding that this is composed of a symplectic and a metric part. 

A metriplectic bracket algebra (MBA) can be turned into a dynamical system once a generating 
function ( )R,MCF ∞∈  is adopted, and the prescriptions 

( )R,,,,, MCfFffFxx ii ∞∈∀==   (20) 

are made. If the definition (19) is used, then the expression for f  reads 

:FfGFfJf ji
ij

ji
ij ∂∂+∂∂=  (21) 

in particular, the behavior along the motion of the generating function of a metriplectic system is 
entirely provided by the character of G, as 0=∂∂ FFJ ji

ij  identically due to the anti-symmetric 

property of J. One then has 

,FFGF ji
ij ∂∂=   

so that, under the assumption (18), this will be monotonically increasing: 0≥F . The generating 

function F that “evolves the system” through the algebra F.,  in (21) is hence a Lyapunov quantity 

of the theory itself, as described in § 2.2: in general, it will contain a part corresponding to the 

symplectic component of .,.  in (19), and a part referring to metric algebra. Physical reasoning 

drives the definition of this and that in § 3.1 below. 
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3.1. Energy Conservation, Entropy Increase  

In [6] a complete system is referred to as a system that conserves its energy, but redistributes it in an 

irreversible way: this “irreversible redistribution” is named dissipation. Complete systems described 

via a MBA are indicated as complete metriplectic systems (CMS). 

In everyday life, dissipation takes place due to the interaction of “macroscopic” degrees of freedom 

with “microscopic” ones, and this interaction mode is also named friction. When friction is at work, 

mechanical or electromagnetic energy is dissipated, i.e. irreversibly transformed, into kinetic energy 

of the microscopic constituents of the system, the degrees of freedom of which are, however, included 

in the system. These degrees of freedom are referred to as Microscopic Statistically Treated  Degrees 

of Freedom (μSTDoF) [Mate.Tassi.1]; here, “statistically treated” means that what describes these 

degrees of freedom in the phase space of the whole system is some collective quantities referring to 

them, precisely their thermodynamic coordinates.  

3.1.1. In case of friction… 

As we’ll see from § 3.5 on, friction is not the only way to have dissipation. However, when friction 

is the pathway to dissipation, the “standard” way to construct a complete system is to consider first a 
Hamiltonian system, with its energy 0H  and dynamical variables y, that does not undergo any kind of 

dissipation; then, add dissipation making the system interact with μSTDoF, which convert the 

“ordered” energy of the “macroscopic, deterministic” degrees of freedom into thermal agitation: these 

degrees of freedom are included in the system in order to keep track of the energy that abandons the 

Hamiltonian part for dissipation. Once the μSTDoF are included, the system dynamical variables are 
enlarged as ( )Σyx ,= , with the vector Σ  collecting the thermodynamic representation of the μSTDoF. 

When the system is complete the total energy is represented by the sum 

( ) ( ) ( ) :,, 0 ΣyyΣy UHH +=  (22) 

the addendum ( )xU  in general includes both a purely μSTDoF term, we would refer to as internal 

energy, and an interaction term depending on the whole configuration x; for simplicity U may be 

supposed to depend only on the μSTDoF, and the equation (22) is rather re-written as  

( ) ( ) ( )ΣyΣy UHH += 0,  (23) 

(one may say that the Hamiltonian system of variables y and the μSTDoF of variables Σ  are assumed 

to be separable). 

Even if the formulation with Hamiltonian (22), or its simplified version (23), includes all the 
dynamical variables of the system, spanning the phase space M of complete configurations ( )Σyx ,= , 

as long as it remains purely Hamiltonian no hope exists of seeing the system converge to an 

asymptotic equilibrium, as required instead for any isolated system with dissipation. This is why one 

needs to move ahead including properly “dissipative forces” into the formulation of Hamiltonian 
( )Σy,H  resorting a metric component, so that a metriplectic scheme is obtained. As metric systems are 

moved by a Lyapunov quantity, such an attribute of the system, monotonic with time due to 

dissipation, must be used. 

For isolated systems with dissipation, Classical Thermodynamics predicts that dissipation is 

accompanied by the increase of entropy [7], a quantity that measures how much underdetermined the 
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microscopic configuration is once the macroscopic one is assigned [8]: the system of variables 
( )Σyx ,=  must have a proper entropy, hence, and it is expected to grow monotonically. Actually the 

entropy is only attributed to the μSTDoF, which is its only part to be treated statistically: the total 

entropy S of the complete system will simply be the thermodynamic entropy of its μSTDoF. One then 

has: 

( ).ΣSS =   

Now, in order to define the metric part of the MBA, this S is of course the most obvious candidate to 

play the Lyapunov quantity Q in § 2.2: the entropy of the μSTDoF must enter F as the metric 

contribution to the metriplectic generator. 

The construction of the MBA describing complete systems is then performed by considering as 

generating function a combination of H and S named free energy 

( ) ( ) ( ),,, ΣΣyΣy SHF α+=  (24) 

where α  is a parameter to be adjusted suitably: since everything’s chosen in order for ( )Σy,H  to be 

constant, and for ( )ΣS  to grow with time, the behavior of F with time depends on the sign of α : 

( ) ( ).signsign αα == FSF   (25) 

The assumption (24) turns (21) into: 

.SfGHfGSfJHfJf ji
ij

ji
ij

ji
ij

ji
ij ∂∂+∂∂+∂∂+∂∂= αα  (26) 

The scheme is completed choosing J and G in (19) according to Physics. In general, the interaction 

between the original Hamiltonian system and the μSTDoF is tuned by some constant η, so that when 

0→η  the subsystems decouple and dissipation disappears. In this limit, clearly, the bracket .,.  

must reduce to the original Poisson bracket { }.,.  moving y via { }0.,H , in which only derivatives y∂  

with respect to y appear: the internal energy ( )ΣU  is not affected by non-dissipative dynamics, so that 

one has { } { }HH .,., 0 = . All in all, the limit { }.,..,.lim
0

=
→η

 must hold, so that, on the one hand the 

metric tensor G in (21) has to vanish for 0→η  

,0lim
0

=
→

ijG
η

  

and on the other hand the tensor J is simply the one forming the Poisson bracket of the Hamiltonian 
system with dynamical variables y and Hamiltonian 0H  we started from. In particular, J components 

pertaining to the sub-manifold described by Σ  are zero. 

When the metriplectic dynamics is enforced as FfGFfJf ji
ij

ji
ij ∂∂+∂∂= , two facts must hold:  

( ) ( ) .0,0, ≥= ΣΣy SH    

The requirement of H to be constant with time is inserted into (26), giving rise to 

,0 SHGHHGSHJ ji
ij

ji
ij

ji
ij ∂∂+∂∂+∂∂= αα   

where the anti-symmetry of J has been taken into account. On the other hand, the first addendum 
SHJ ji

ij ∂∂α  is equal to { }HSHSJ ba
ab ,αα −=∂∂− , { }HS,  being the variability with time of S under 

the mere Hamiltonian part of the motion: now, since no change in the μSTDoF entropy is expected due 
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to the “conservative forces” represented by { }H., , one expects to have 0=∂∂ SHJ ji
ijα . This is a 

precise request on the relationship between S and the symplectic part of .,. , and we’ll discuss it 

soon; for the moment being, let’s simply consider 

( ).00 SHHGH jji
ij ∂+∂∂== α   

In order for the factor ( )SHHG jji
ij ∂+∂∂ α  to be zero, the simplest thing to assume is 

( ) ( ),,0,0 RMCffHHG i
ij ∞∈∀==∂  (27) 

i.e. to assume that the metric tensor G has the gradient of H among its null vectors, so that the 
Hamiltonian has null metric bracket with any other element of ( )R,MC∞ . This (27) is what remains of 

the request that the total energy of the complete system is conserved. 

About the monotonic increase of S, instead, while (27) holds, one may apply (21) and (24) and 

obtain: 

.SSGHSJS ji
ij

ji
ij ∂∂+∂∂= α  

Now, if a formal request 

{ } ( ),,0, RMCfSf ∞∈∀=   

meaning that S is a Casimir of the Poisson bracket at hand, one simply gains: 

.SSGS ji
ij ∂∂= α  

Choosing the sign of Gdetα  as positive, the condition 0≥S  is immediately satisfied. Considering 
( ) 0., =H  and { } 0., =S  identically, the evolution of the system, and of any observable along the 

system trajectory, reads:  

{ } ( ) { } ( ).,,,,, SfHffSxHxx iii αα +=+=   

Thus, we end up with a dynamical theory referred to as complete metriplectic system (CMS).  

3.1.2. Frictionless dissipation 

The intervention of μSTDoF draining energy from deterministic variables y of a Hamiltonian system 

through friction may be not necessary in order for a CMS to admit asymptotically stable equilibria: 

there exist CMS the dynamics of which still undergoes the rules (18), (19) and (20) as:  

( ){ } ( )( )

{ } ( )













∀==
≥

+=

,0,,0,

,0

,,,

ffHfQ

Q

QH
dt

d



xxxxx α

 

in which the entropy-like observable Q and the Hamiltonian H depend on the same variables x. These 

CMS may be indicated as “frictionless” because μSTDoF cannot be singled out but, as the example in 
§ 3.5, so the terms causing ...=dt

dx  to be a time-irreversible equation do not represent a “cascade” of 

energy from large time- or space-scales to smaller ones, but simply the intervention of the symmetric 
component ( ).,.  of a Leibniz algebra generating the motion. 
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The “big difference” between CMS with friction and frictionless ones is that in the first case a 

granular nature of the material system must be supposed, so that dissipation transfers energy from 

“macroscopic” to “microscopic” scales: hence, a CMS with friction must be non-elementary in a sense, 

because the deterministic variable y, e.g. in (22), describe the macroscopic world averaging away 

fluctuations of microscopic constituents of matter, that will be encoded in the thermodynamic 

coordinates Σ of the μSTDoF. Only the μSTDoF may be “elementary” degrees of freedom, but they 

are treated statistically… 
Frictionless CMS instead implement dissipation at a fundamental level, via the ( )Q.,α  component, 

which does not require any “smaller” constituent to exist. Simply, frictionless CMS seem to teach that 

irreversibility do not require the “coarse graining of micro-things”, but rather the appearance of the 

semi-metric component of .,. , yielding a Lyapunov Q the growth of which just agrees with the 

verse of time flow. 

The contribution of frictionless CMS at a fundamental level is two-folded: on the one hand, they 
generalize the idea of entropy ( )ΣS  to Lyapunov dynamics generators ( )xQ ; on the other hand, their 

quantization may give hints to implement dissipation-irreversibility in terms of fundamental 

“microscopic” laws of Physics. 

3.2. Stationary Points  

The role of free energy F is, as it was happening in any Leibniz system, to provide with the stationary 

points of the dynamics at hand in terms of its extrema. Indeed, since ( ) FfGfJf ji
ij

i
ij ∂∂+∂=  it is 

clear that nothing in the system will change if it is put in some configuration 0x  so that ( ) 00 =∂ xFj . 

In the case of CMS with friction, due to the definition (24) and to the nature of the phase space 
coordinates ( )Σyx ,= , the condition ( ) 00 =∂ xFj  corresponds to the collection of conditions:  










=
∂
∂+

∂
∂

=
∂
∂

.0

,0

ΣΣ

y
SH

H

α
 

More precisely, considering the decomposition (23) of the Hamiltonian, one rather has to write:  










=
∂
∂+

∂
∂

=
∂

∂

⇔=
∂
∂

.0

,0
0

0

ΣΣ

y
x SU

H
F

α
 (28)

The relationship 00 =∂
∂

y
H  prescribes the mechanical equilibrium (in radiation systems this could be as 

well a “radiative” equilibrium, in that case y are field variables), while the relationship 0=+ ∂
∂

∂
∂

ΣΣ
SU α  is 

the thermodynamic equilibrium request. The latter will also help us fixing α  in a physically sensible 

way, typically as minus the temperature of the μSTDoF. 

About the nature of maxima or minima of the stationary points (28), one should calculate explicitly 

FFF ,=  considering (24), that would clearly re-lead to (25): in turn, it is sensible to establish α  

considering the physical sense of (28), and then assessing whether F  has a positive or negative sign. 
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As far as the frictionless CMS are concerned, their dynamical generator F is still subdivided into a 

Hamiltonian “plus some Lyapunov”  

( ) ( ) ( );xxx QHF α+=  

however, as long as the decomposition ( )Σyx ,=  is not available, the steady state prescription 

0=
∂
∂

x
F

 (29)

will have a different interpretation; in some cases, as the one discussed in § 3.5, the determination of 

α  out of (29) still leads to equating it to some (sign reverted) temperature. 

3.3. Two Elementary Examples with Friction 

Two very simple examples can be given, taken from the Newtonian mechanics, and very useful to 

start getting acquainted with CMS.  

3.3.1. The point particle in the viscous medium 

In the first example the complete system is formed by a point particle of mass m moving in the 3-

dimensional space through an infinite viscous medium [3], so that its equations of motion read  

., p
mx

V

dt

pd

m

p

dt

xd 


 λ−
∂
∂−==  (30)

The foregoing equations would reduce to a Hamiltonian system pmxdt
d  1−=  and Vp xdt

d 
 −∂=  in the 

non-dissipative limit 0→λ , the dynamical variables of which would be ( )px


,=y , and with 

Hamiltonian ( ) ( )xVpH m

+= 2
2
1

0 y . In order to recognize a metriplectic complete system one has to 

include the viscous medium variables, introducing a very simple collection of (thermo)dynamical 
coordinates, namely the medium entropy only ( )S=Σ : hence the whole Hamiltonian reads  

( ) ( ),0 SUHH += y  

with internal energy of the viscous medium ( )SU . Of course, the complete dynamical variable is 

( )Spx ,,
=x . 

Figure 1.  The point particle of mass m and position x


 moving through the medium of 

viscous constant λ , described as a metriplectic system in § 3.3.1.  

 
The cartoon of the system is that of Figure 1. 
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In order to construct the MBA for equations (30) it is necessary to know the ODE for the entropy, 
which is obtained by the classical relationship TdSQd =/ , being T the temperature of the medium and 

Qd/  the amount of thermal energy transferred from the mechanical degrees of freedom y to the viscous 

medium. Actually, since the energy must be conserved, Qd/  is simply minus the power of the 

dissipative force pm
λ1−−  exerted by the medium on the point particle, times the infinitesimal time 

interval dt: this power being pmpmw
 11 −− ⋅−= λλ  and dtwQd λ−=/ , one has dtpmQd 22λ−=/ , and 

considering dtSdS =  one ends up with:  

Tm

p
S

2

2λ=  (31)

(obviously, the temperature of the medium is supposed to remain constant, while friction transfers such 

a small amount of energy from the pointlike particle). Equation (31) completes the ODEs of the 

complete system we are looking for, together with equations (30). 

According to equation (24), the free energy of the system reads  

( ) ( ) ( ) :
2

,,
2

SSUxV
m

p
SpxF α+++= 

 (32)

the parameter α  may be determined by imposing that the extrema of F represent steady states. The 
steady state 0x  is found as the solution of  

.0,0,0 =
∂
∂=

∂
∂=

∂
∂

S

F

p

F

x

F
  (33)

If (32) is put into (33) one finds 

( ) ( ) :0,0,0 000 =+
∂
∂==

∂
∂ αS

S

U
px

x

V 
  

the first and second equations mean that the point particle will stop at an extremum of the mechanical 
potential, with null momentum (velocity); the third equation, better re-written as ( )0SS

U
∂
∂−=α , instead 

determines α  as minus ( )0SS
U

∂
∂ , which is clearly the equilibrium temperature of the viscous medium T, 

after the relationship TS
U =∂

∂  due to Classical Thermodynamics [7]. Equilibrium equations 

( ) Tpx
x

V −===
∂
∂ α,0,0 00


  

allow to re-write the free energy (32) in the following way:  

( ) ( ) ( ) .
2

,,
2

TSSUxV
m

p
SpxF −++= 

 (34)

By the way, due to the relationship T−=α , the tensor G has to be negative semi-definite. 

In order to complete the MBA one has to define suitable J and G. The tensors will be written with 
respect to the components x


, p


 and S, so they will look like:  
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.
1

,

0
2

2
1

3,1

1
3,33,3

1,33,32
3,3

2

3,13,1

1,33,33,3

1,33,33,3























−

−
∂

∂⊗∂−∂

=















−=

−

−

Tm

p
pm

pmT

V

VVV

GJ

T

x

xxx

λλ

λλ
α 






0

10

00
1

00
001
010

 (35)

In (35), note that G has the same definition as the sign of α , since the matrix multiplying 1−α  has 

either null eigenvector. With the matrices defined in (35) the relationships 

{ } ( ) 0,,0, == HfSf  

for any f are satisfied, moreover one obtains 

{ } ( ) { } ( ) ( ) ,,,,,,,,
2

2

Tm

p
SSp

mx

V
SpHp

m

p
SxHx

λαλαα =−
∂
∂−=+=+ 



 

meaning that we are in the presence of the correct tensors (35) to define the MBA reproducing the 

ODEs (30) and (31). All in all, with the tensors in (35) and the generating function F in (34), we can 

state: Fff ,=  for any observable f of the system. 

3.3.2. The piston and the spring 

The second example of metriplectic system taken from everyday Physics is a piston of mass m and 

surface A, moving along a horizontal guide and pushed by a spring of constant k. This piston makes 

work against a viscous gas of mass M, the pressure of which is indicated as P. This system is depicted 

as in Figure 2. 

Figure 2.  The piston and the spring, described in § 3.3.2 as a metriplectic complete 
system. The density of the gas is indicated as ρ .  

  
If no viscosity were present, the system would be conservative, i.e. Hamiltonian: the necessary, 

independent dynamical variables would just be x and p of the piston; when energy is irreversibly 

transferred between the mechanical degrees of freedom and the μSTDoF of the gas, due to viscosity, 

some thermodynamic coordinate of the medium must be included: the entropy S of it is the simplest 

candidate, so that in this case the dynamical variables of the complete system are collected in the 
vector ( )Spx ,,=x . The ODEs of x are written as [3]: 

( )
Tm

p
S

m

p
PAxkp

m

p
x

2

2

,,
λλ =−−−−==   (36)
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(the parameter   is the equilibrium length of the spring, while T is the temperature of the gas, and the 
same reasoning about TdSQd =/  as in § 3.3.1 has been applied). As far as the thermodynamics of the 

gas is concerned, this case is more interesting than the one discussed above, where the point particle 

could vary nothing of the infinite medium. In general, indeed, one may expect that the thermodynamic 
coordinates of the gas should be S and, e.g., the mass density ρ , so that its internal energy reads 

( )SU ,ρ , and the pressure P in (36) is defined as 

.
2

ρ
ρ

ρ
ρ

∂
∂=

∂
∂= U

M
P

U
PV  (37)

Here the only fixed things of the gas are the area A of the piston and the mass M of the medium: in 
general, its volume reads ( ) ( )xLAxV −= 0 , so that the density will depend on the position of the piston 

as 

( ) ( ) .,
2

2
0 M

A

xA

Mx

xLA

M
x

ρρ
ρρ

ρ =
∂
∂=

∂
∂


−

=  (38)

This x-dependence in the density does imply that the coordinates of the complete system are ( )Spx ,,  

instead of the redundant set ( )Spx ,,, ρ ; it also yields the dependence ( )( )SxU ,ρ , so that the 

subsystems “piston-attached-to-the-spring” and “gas” are not separable. 

The whole Hamiltonian of the system includes the kinetic energy of the piston, the elastic energy of 
the spring and the internal energy of the viscous gas ( )( )SxU ,ρ . Once it’s written, it is very easy to 

write also the free energy F:  

( ) ( ) ( )( )

( ) ( ) ( )( ) .,
22

,,

,,
22

,,

2
2

2
2

SSxUx
k

m

p
SpxF

SxUx
k

m

p
SpxH

αρ

ρ

++−+=

+−+=




 (39)

In order for the generator ( )SpxF ,,  to produce the correct ODEs (36), one just has to choose the 

two tensors J and G as follows 

,

0

0

000
1

,

000

001

010

2

2
1

1





















−

−=















−=

−

−

Tm

λp
pλm

pλmλTGJ
α

 

being written with respect to the dynamical variables ( )Spx ,, . Last but not least, one may find out the 

equilibria of the system by checking the extrema of the function F as:  

.0,0,0 =
∂
∂=

∂
∂=

∂
∂

S

F

p

F

x

F
 

With the specific form (39), and considering the relationship among U, P, x and ρ  in (37) and (38), 

one obtains 

:,0, 00 Tp
k

PA
x −==−= α  
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respectively, these are the balance between the gas and the spring forces, the zero velocity of the piston 

and the correspondence of the parameter α  to minus the temperature of the gas. 

3.4. Classical Fluids 

In fluid theories, in the absence of dissipation the energy transfer would take place among degrees of 

freedom making sense at a macroscopic scale, and ignoring the granular nature of matter; however, as 

“friction” is turned on, by considering finite viscosity, the degrees of freedom of the microscopic 

particles forming the fluid play the role of the μSTDoF discussed before. 

About this, a remark is necessary, to stress the difference between these systems and those 

discussed in § 3.3. In the examples in § 3.3 the complete system was subdivided into two subsystems 

“materially” separated: in § 3.3.1 there was a point particle treated deterministically and a viscous 

fluid with μSTDoF, while in § 3.3.2 the deterministic degrees of freedom were those of the piston, 

while μSTDoF were attributed to the viscous gas against which the piston was working. Dissipative 

continua do not show a “material separation” between the deterministic, Hamiltonian part of the 

complete system and the μSTDoF draining energy irreversible and, hence, giving rise to dissipation. 

Consider a “macroscopic infinitesimal” parcel, i.e. a portion of fluid containing a thermodynamic 

number of particles and still being so small that the continuum field variables are constant within it: 

the motion of the particles within the parcel represent the μSTDoF, while the motion of the parcel’s 

center-of-mass (CoM) throughout the space represent the degrees of freedom y in § 3.1, with a 

deterministic dynamics. In a fluid context, the energy pertaining to the center-of-mass of a given parcel 

Cδ  is irreversibly converted, by dissipation, into the energy of the μSTDoF relative to another parcel 

'Cδ ( Cδ  and 'Cδ  are different parcels, otherwise a mechanical system would be able to alter its own 

CoM motion, against Newton’s Principles: this is why dissipative terms appear in the equations of 

motion of fluid dynamics with space-derivative terms, taking into account of the different CoM 

velocities of nearby parcels [9]. With the dissipation due to currents the thing is slightly subtler, 

because the energy irreversibly converted there comes from the magnetic degrees of freedom [4, 10, 

11]). 

Dissipative fluids may be understood as complete metriplectic systems in which the y and the Σ  

just describe different degrees of freedom of the same material system: as explained before, these 

variables describe the system at different space- and time-scales. 

In the Lagrangian representation of dissipative fluids the dynamical variables are the CoM position 
( )a
ζ  and momentum ( )a

π  of each fluid parcel, plus the variables relative-to-the-CoM of the same 

parcels, thermodynamically described through the entropy density ( )as


. The 3D continuous index 

0D∈a


 materially labels the fluid parcels [12], it refers to the initial position of the parcel that labels as 

( )0,aa
 ζ= , if ( )ta,

ζ  is the position of the a


-th parcel at time t. The domain 0D  is the initial volume 

occupied by the continuous matter.  
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Figure 3.  A cartoon by the Author showing the idea of Lagrangian (material) coordinates 
for the continuum system: from the 3D volume 0D , initially occupied by the fluid matter, 

the system evolves into some volume ( )tD  it occupies at time t. While the 0D  is spanned 

by the 3D label a


, at time t the volume ( )tD  is described by the positions ( )ta,
ζ  that are 

the transformed positions of the fluid parcels, namely being ( )0,aa
 ζ= . The initial parcel 

volume ad 3  gets transformed into ( )tad ,3 ζ  at successive times, with the relationship 

( ) ( ) adtatad 33 ,J,
 =ζ , see text for details. Note that the a


-dependence is indicated via a 

subscript in the Figure, so one must understand ( ) ( )tadtd a ,33 
 ζζ ≡  and so on. 

 
 

The subdivision between “Hamiltonian” variables y and μSTDoF variables Σ is simple, 

( ) ( )( )aa
 πζ ,=y , ( )( )as

=Σ , while the mass ( )a
ρ  of the density a


-th parcel may be expressed in 

terms of the initial mass density ( )a


0ρ , that characterizes the mass geometry of the continuum and is 

assigned once and forever, and the Jacobian determinant ( ) aa 


∂
∂= ζdetJ , that is a functional of the 

dependence of ( )a
ζ  on its parcel-index a


: 

( ) ( )
( ) ;

J
0

a

a
a 

 ρρ =  

( )a
ρ  would be redundant, as a dynamical variable, to the complete configuration 

( ) ( ) ( )( )asaa


,,πζ=x . 

Excluding dissipative forces, the infinitesimal parcel described by the configuration x can be 

attributed a Hamiltonian dynamics by considering its energy determined by the sum of a kinetic part, a 

potential part giving rise to the pressure forces exerted by the surrounding parcels, and a part due to 

external “conservative” forces. The total Hamiltonian of the fluid reads: 

[ ] ( )
( ) ( ) ( )

( ) ( ) ( ) ( )( ) .,
J2

,,
0

0
0

0
0

2
3 








+







+=
D

aVaas
a

a
Ua

a

a
adsH






 ζρρρ

ρ
ππζ  (40)

The dissipation free motion of the fluid is generated by the foregoing Hamiltonian and the Poisson 

bracket:  

{ } ( ) ( ) ( ) ( ) .,
0

3 







⋅−⋅=

D a

f

a

g

a

g

a

f
adgf  πδ

δ
ζδ
δ

πδ
δ

ζδ
δ

 (41)

The Hamiltonian limit of the fluid dynamics is then:  
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[ ] [ ] [ ]{ }. ,,,,,,, sHsfsf πζπζπζ  =  (42)

The symplectic bracket (41) is a canonical one, not different from those of ordinary point particles of 

Newtonian Physics [5]. In particular, it doesn’t contain any derivative with respect to the entropy 
density ( )as


, so it does not involve any statistical proxy of the μSTDoF: this is a benefit brought by 

the Lagrangian representation, while in the Eulerian one derivatives with respect to ρ  and s appear 

[11]. Of course, microscopic degrees of freedom of the parcel are present in [ ]sH ,,πζ 
, in particular 

through the internal potential energy ( )
( ) ( )( )asU a

a 



,J
0ρ : still, due to the form of (41), the entropy density 

( )as


 is perfectly conserved  

( ) ( ) [ ]{ } :0,,, == sHasas πζ   

as the ideal, dissipation-free motion of the fluid takes place, the amount ( )as


, encoding the complexity 

of the particle motions internal to the macroscopic parcel, remains frozen to its original value. One 
could well consider ( ) ( ) ( )asastas


00,, ≡=  a parameter rigidly assigned (as the density ( )a


0ρ ), so that 

the Hamiltonian (40) would become a quantity as the 0H  in (23). In our case, the “free Hamiltonian” 

( )y0H  would rather read 

[ ] ( )
( ) ( ) ( )

( ) ( ) ( ) ( )( ) . ,
J2

,
0

00
0

0
0

2
3

0  







+







+=
D

aVaas
a

a
Ua

a

a
adH






 ζρρρ

ρ
ππζ  

In the foregoing formula 0H  just depends on the CoM variables because the other ones are frozen and 

“do not exist” as dynamical variables. Considering the prescription (42), the fluid dynamics in 

Lagrangian variables is written as:  













=
∂
∂

∂
∂=








∂
∂

∂
∂+

∂
∂−=

=

0

,
2

,
J

,

00

s

aa
A

U

a
A

V
nm

imn
i

i
i






λκ

ακλ
αααα

αα

ζζεερ
ζ

ρπ

πζ

 (43)

(Greek indices refer to the vectors ζ


 and π , Latin ones to the 3D parcel-index a


). In the ideal case 

without dissipation the density, s has zero Poisson bracket “with anything”  

( ){ } ,0, fasf ∀=
 (44)

so does the total entropy of the fluid defined in (46), see below. 

Including the interaction with the μSTDoF means simply unfreeze the thermodynamic quantity 
( )as


 thanks to dissipative “forces” that may change its value. The dissipative forces we are talking 

about would turn the foregoing equations (43) into the following ones:  
















∇∇+







∇



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


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







∇∇Λ+








∂
∂

∂
∂+

∂
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=

.
JJ

, J
J

,

0000

0
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i

α
α

δ
γ

β
α

αβγδ

δ
γβ

αβγδααα

αα

ρ
κ

ρ
π

ρ
π

ρ

ρ
πρ

ζ
ρπ

πζ







 (45)



 19 

 

The convention ζ



∂
∂=∇  is intended. In (45) the coefficient κ  is the thermal conductivity, while T is the 

temperature of the μSTDoF within the parcel, defined as always: ( ) ( )as
UaT 


∂
∂= . As far as the symbol 

αβγδΛ  is concerned, we simply state:  

.
3

2
γδαβγδαβγαδβγβδααβγδ δζδδδδδδδη +






 −+=Λ  

In (45) the entropy variation is due to the non-ideal stress tensor, hence viscosity 

,
J

000








∇







∇Λ

ρ
π

ρ
π

ρ

δ
γ

β
α

αβγδT
 

and to thermal conduction 

,
J

0

T
T α

α

ρ
κ ∇∇  

i.e. to the two irreversible processes taking place. These are the processes draining energy out of the 

parcels’ CoM degrees of freedom ( ) ( )( )aa
 πζ ,=y , smoothing the velocity difference between nearby 

parcels (i.e. killing the gradients πa∂ ) and homogenizing temperature T via thermal diffusion. 

It is possible to construct a functional derivative semi-metric bracket that defines a MBA together 

with the Poisson bracket (41), that can reproduce equations (45). As usual, the entropy of the μSTDoF 

responsible for dissipation must be introduced  

[ ] ( ) ( ),
0

0
3=

D

asaadsS
ρ  

(46)

that is a Casimir of (42), as its integrand is, see equation (44), and composes the free energy together 

with the Hamiltonian:  

[ ] [ ] [ ]. ,,,, sSsHsF απζπζ += 
 (47)

Then, the symmetric bracket completing the MBA reads [9]:  
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D

The Hamiltonian (40) has null semi-metric bracket with anything, while the increase of entropy is 

given by putting together the definition (46) and the third equation in (45). 

With this semi-metric bracket (that has the same definition of α , in terms of the sign) equations 

(45) are reproduced by assigning the usual metriplectic dynamics { } ( )SfHff ,, α+=  for any 

physical functional [ ]sf ,,πζ 
. 

3.5. Kinetic Theory 

The CMS described until now are essentially formed by a Hamiltonian system of variables y plus a 

“thermal bath” of statistical variables Σ, indicated as μSTDoF. The interaction between the two sub-
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manifolds of the phase space M is described by the metric part of the Leibniz bracket algebra .,.  

generating dynamics. In this session, then, we will make the example of a dynamical system that 

instead has only one dynamical variable and, still, may admit either a Hamiltonian description or a 

metriplectic one depending on whether dissipative, time-asymmetric interactions are included or not: 

together with the example of § 3.6 this case permits us to introduce a subtler distinction between the 

Hamiltonian and the non-Hamiltonian part of a MBA, namely the time-reversible and the time-

irreversible one, crucial for the construction illustrated in § 4. 

The example we are going to treat here is that of kinetic theories. 

Kinetic theories represent a system of many identical particles through the so called Boltzmann 
distribution in the μ-space [13], i.e. a single particle space 6R  in which ( )tvxff ,,

=  is the probability 

density that a particle of the system picked at random is at the position x


 in the 3D space, with 

velocity v


 at time t. We are discussing the so called Vlasov-Poisson system: a gas of electrically 
charged particles is coupled to an electrostatic field represented by its scalar potential ( )x

φ  acting on 

the charged particles; then, the equation of motion of the μ-space distribution ( )tvxf ,,


 is the Vlasov 

equation coupled with the Poisson equation for the electrostatic field [6]:  

[ ] [ ]. coll fWf
xv

f
v

x

f
ft =

∂
∂⋅

∂
∂−⋅

∂
∂+∂ 




φ
 (48) 

In the equation (48) the term [ ]fxφ∂−  represents the electrostatic field that, at any time, depends on 

the distribution f itself through the charge distribution in the space, while [ ]fWcoll  is referred to as the 

collision term representing the time variation of ( )tvxf ,,


 due to two-particle collisions at that given 

point x


 at that time. The term [ ]fφ  is constructed as a functional of f, rendering (48) an integro-

differential equation:  

( ) ( ) ( )  −= .,','''', 33 tvxfxxVxdvdtx
φ  

The kernel ( )'xxV
 −  is simply the electrostatic potential in a point x


 due to the presence of the point 

particle at the position 'x


: this determines the forces through which particles sense each other. 
Kinetic theory states that equations as (48) are non-time-reversible due to the term [ ]fWcoll , that in 

practice represents the dissipative term giving rise to the increase of entropy (the so called 
Boltzmann’s H-Theorem): the very beautiful thing is that, in the collisionless limit [ ] 0coll →fW , what 

remains of (44), i.e.  

[ ] ,0=
∂
∂⋅

∂
∂−⋅

∂
∂+∂ f

xv

f
v

x

f
ft 




φ
 (49) 

is a Hamiltonian dynamical system, while the collisional Vlasov-Poisson system (48) is represented as 

a CMS. 

In practice, the dissipative term in (48), i.e. 2-particle collision term, does determine the non-

Hamiltonian, semi-metric contribution to the dynamical system and, needless to say, is moved via a 

symmetric bracket by an entropic functional. 

Consider, first of all, the functional 

[ ] ( ) ( ) ( )   += vxftxvdxd
mv

vxvfdxdfH


,,
2

1

2
, 33

2
33 φ  (50) 
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 and the Leibniz functional bracket 

[ ] [ ]{ } ( ) ( ) ( ) ( ) ( ) :
,,,,

,, 33  






 ∂⋅∂−∂⋅∂=
vxf

A

vxf

B

vxf

B

vxf

A
vxvfdxdfBfA vxvx 



δ

δ
δ

δ
δ

δ
δ

δ
 (51) 

not only this { }.,.  in (51) is a Poisson bracket satisfying anti-symmetry and Jacobi identity, but it also 

generates the collisionless equation (49) once the Hamiltonian functional [ ]fH  defined in (50) is 

made use of:  

( ) ( ) [ ]{ }. ,,, fHvxfvxft

 =∂  

In order to turn on collisions, and then obtain the equation (44), one resorts Boltzmann’s entropy 

[ ] ( ) ( ):,ln,33 −= vxfvxvfdxdkfS


 (52) 

as soon as one defines a symmetric, semi-metric functional bracket 
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(53) 

one may rather easily check:  

[ ) ( ) [ ]( ) , ,,,;coll fSvxfvxfW
 α=  

provided the collisional term [ )vxfW


,;coll  is assumed of the form [6]: 

[ )
( )( ) ( ) ( ) ( ) ( )
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
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Considering the full free energy functional and the MBA constructed through (51) and (53) 

[ ] [ ] [ ] { } ( ),,,,, BABABAfSfHfF +=+= α  (54) 

the equation (44) is finally reproduced:  

( ) ( ) [ ]fFvxfvxft ,,,
 =∂  (55) 

(consider the Hamiltonian to be a null mode of the semi-metric component [ ]( ) 0,. =fH , and the 

entropy to be a Casimir of the Poisson component [ ]{ } 0,. =fS ). 

Before going to the next example, something should be stressed about the model (55), so to have a 

hint for the next § 4 and for concluding remarks.  

As cleverly shown in [6], the model (55) may be adapted to make the system relax to different 
equilibrium field configurations ( )vxf


,0 , and the “tailoring” must be done on the entropic functional S 

in (52): since any functional of the form [ ] ( )( ) = vdvxfsxdfS 33 ,


 is a Casimir of the Poisson 

bracket (51), to each function ( )RR,∞∈Cs  there will correspond a MBA, relaxing to a suitable 
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( )vxf


,0  thanks to the action of S through [ ]( )sfS.,α , being ( )s.,.  a semi-metric functional bracket 

“tailored” on the function s. For instance, the S in (52) leads to the Boltzmann equilibrium with 
absolute temperature α−=T , while if the function ( ) ( ) ( )[ ]ffffkfs −−+−= 1ln1ln  were used, with 

a suitably adapted bracket ( )s.,.  (see [6] for details), then ( )vxf


,0  would be a Fermi-Dirac one, still 

with absolute temperature given by the constant α  appearing in (54) as α−=T . 

The other crucial observation on (54) and (55) is that the CMS at hand has one field variable only, 

i.e. the distribution f, so one does wonder where the “Hamiltonian” sub-system (i.e. y) and the 
μSTDoF (i.e. Σ) are! The answer, contained in [ ] [ ] [ ]{ } [ ]( )fSAfHfAfA ,, α+= , is that indeed there 

does not exist any frictionless sub-system and any μSTDoF draining “ordered” energy from it, there 

are not fundamental sub-systems: rather, there exist fundamental algebraic sub-structures, i.e. 
components of the algebraic structure of dynamics, namely { }.,.  and ( ).,. , apparently giving rise to so 

deeply different behaviors with respect to time flow [14], i.e. “eternal perfect conservative 

Hamiltonian” and “ageing time-irreversible entropic” evolutions. The example in § 3.6 will clarify this 

point further. 

3.6. Morrison’s rotator 

What is referred to as Morrison’s rotator here is a toy model very similar, to many extents, to the 

kinetic metriplectic theory described in § 3.5, because the system has only one dynamical variable, 

namely the angular momentum 3R∈L


 of a rigid body of the Newtonian Physics. 

The free rigid rotator has equations of motion, written in terms of the components of L


 in the 

principal inertial axes, given by: 

( ) ,
i

kjjk
i

i

I

LL
L

ε
=  (56) 

where ( )aI  is the momentum of inertia with respect to the a-th principal axis, along which the 

component of L


 reads aL . The symbol jk
iε  is the partially contravariant form of Ricci SO(3)-tensor. 

The ODEs (56) are straightforwardly reproduced by the Poisson bracket 

{ } ,,
kj

ijk
i L

g

L

f
Lgf

∂
∂

∂
∂−= ε  (57) 

provided the mechanical energy of the rigid rotator ω


⋅L2
1  is used as a Hamiltonian, being ω  the 

angular velocity of the system, with ( ) aaa IL ω= . If the diagonal tensor of inertia ( ) abaab I δσ =  is used, 

the Hamiltonian giving (56) thanks to (57) reads:  

( ) ( ) { }.,,
2

1 1 HLLLLLH iiba
ab == − 

σ  (58) 

In order to produce a CMS based on the Hamiltonian model (58) of course physical friction may be 

added, for instance considering the rotation energy dissipation due to the μSTDoF of a viscous fluid 

through which the rigid body is rotating. However, another way is possible, presented originally in [6] 

as far as the Author knows, and hence referred to as Morrison’s rotator, from the name of the 

mathematical physicist who published [6]; indeed, any function ( )2LW , being LLL


⋅≡2 , is a Casimir 

of the Poisson bracket (57), hence any function  
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( ) ( ) ( )2LWLHLF α+=


 (59) 

may be used as free energy to build up an MBA, once the suitable semi-metric tensor ijG , and a 

consequent semi-metric bracket ( ).,.  are constructed: 

( ) ( ) .,,
1 2

ji
ij

jiijLij L

g

L

f
Ggf

L

H

L

H
HLG

∂
∂

∂
∂=








∂
∂

∂
∂−∂= δ

α



 (60) 

In (60) the projector orthogonal to the L


-gradient of H has been used to construct G, so it’s blatant 
that ( ) 0, =Hf  for any f. All in all, the right brackets to prepare a MBA with (59) as the free energy 

are ready:  

{ } ( ) ( ) ( ) ( ) ( ).,,,,,, 3 RR∞∈∀=+= CfLFLfLfgfgfgf
  (61) 

It may be shown that the steady points of the system with free energy (59) are the configurations 

with L


 aligned along one principal axis of inertia, i.e. has only one component; THE CMS of 

dynamics (61) represents a free rigid rotator that relaxes getting aligned with one of its axes of inertia. 

Again, as it was already happening for the kinetic theory in § 3.5, there exist no macroscopic degrees 

of freedom the ordered energy of which is drained by the disordered microscopic degrees of freedom 

giving friction: rather, (61) represents an algebrized dynamical system with a time “time-reversible” 

symplectic part and an “ageing” metric part. It is pretty clear that this MBA works in the same way of 
a CMS with friction; of course, the delicate point is to understand that the function ( )2LW  of (59) has 

to do physically with the entropies seen until now. 

4. Conclusions 

After having gone through what presented here, I would like the reader to retain few important 

facts, listed here. 

1. Classical dynamical systems with dissipation may be recast in an algebraic way, through a 

generalization of the symplectic brackets of Hamiltonian systems: this is the metriplectic 

bracket formalism. In bracket algebraic formalism the symmetry properties are much more 

under control and may be exploited. 

2. The bracket algebra associated to a classical dissipative complete system is composed by the 

Poisson brackets and the Hamiltonian, that describe “what the system is made like” (i.e., 

what are its degrees of freedom and dynamical variables, what are its own fundamental time 

scales, the hard core of its phase space structure), and the metric brackets and the entropy, 

that describe “what the system ages like”, relaxing to an asymptotically stable state. This 

kind of representation is referred to as complete metriplectic system (CMS). 

3. The metric component giving rise to dissipation is crucially symmetric and positive (semi-) 

definite: this fact does allow irreversible motion to take place. 

4. CMS may have their dissipative component either originated from the interaction of a 

“macroscopic” Hamiltonian system with microscopic degrees of freedom (usually treated 

statistically), giving rise to “friction” (the examples in § 3.3 and § 3.4); or from a 

“postulated” non-Hamiltonian interaction among dynamical variables already involved in 

the Hamiltonian component (the examples in § 3.5 and § 3.6). 
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5. In the cases studied in § 3.3 and § 3.4 (dissipation with friction) and in § 3.5 (dissipation due 

to particle collisions), the observable responsible for the non-Hamiltonian, metric part of the 

dynamical algebra is easily interpreted as the entropy of the system. In the system discussed 

in § 3.6 the interpretation of the same quantity is not completely clear. 

As demonstrated during this work, metriplectic formalism promises to put together dynamical 

system theory and bracket algebra also in the presence of dissipation, involving an observable 

behaving as a Lyapunov function in the role of generator of the dissipative component. The Author is 

sure of the fact that, prolonging enough this path of research, the role of dissipation in fundamental 

Physics, even at elementary particle level, will be clarified; moreover, the algebraic nature of CMS is a 

blatant invitation to match what we learn at a classical level with the quantum world. 
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