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Abstract: Isotope effects in the thermodiffusion of dilute atomic liquids are examined 

using a non-equilibrium thermodynamic model, where the thermodynamic parameters are 

calculated using equations rooted in statistical mechanics. In this approach, isotope effects 

in thermodiffusion are quantified through the variation in chemical potential and its 

temperature dependence with the isotope mass.  The model is applied to silicate melts, in 

order to compare our results to recent approaches that incorporate quantum mechanics and 

kinematic concepts. We show that the previous theories either require unrealistic values of 

physical parameters or are based on invalid assumptions. The model provides an adequate 

description of isotope effects in thermodiffusion in silicate melts, with reasonable values of 

the Soret coefficient. 
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1. Background 

Recent attempts to explain isotope effects in the thermodiffusion of silicate melts using quantum-

mechanical models have been a topic of considerable discussion in the literature [1-6].  The quantum-

mechanical model is based on the mass dependence of vibrational and librational frequencies. The 

view that classical approaches cannot adequately describe isotope effects [7-9] is based on the fact that 

“classical” differences in the isotope chemical potentials are identical in all possible phase states. In a 

recent paper [10], however, molecular dynamics simulations were used to argue that isotope effects in 

thermodiffusion can be explained through classical mechanical effects. 
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The quantum-mechanical model of thermodiffusion [4] relies on the standard mechanism of isotope 

effects employed in chemical kinetics, with translational vibrations as the primary factor. 

Thermodiffusion is a result of differences in the vibrational zero-point energies between isotopes, 

which leads to a difference in the probability of a jump from one potential well to another. The model 

has been criticized [5] for the unacceptably large value of the vibrational zero-point energy that 

resulted from fitting the model to empirical data in silicate melts. The best-fit value of that zero-point 

energy is comparable to the characteristic energy of a chemical bond, whereas the calculated diffusion 

coefficients indicate a value that is several to ten times smaller in magnitude. Thus, this model cannot 

describe isotope effects at room temperature or higher.  

In another work [11], quantum effects in the molecular librations related to the mass difference 

were used to explain isotope effects in thermodiffusion. The authors communicated an acceptable 

agreement with experimental data, but only by ignoring much larger classical contributions related to 

the kinetic energy of translational and rotational motion. That oversight resulted from an approach to 

thermodiffusion [12-15] that expresses parameters of mass and thermodiffusion through pressure, 

which is proportional to the volume derivative of the partition function Z [8, 9]: 

lnP kT Z
V
∂= − ∂      (1) 

According to Ref. [9], the partition function mentioned in Ref. [11] can be written as 
2
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where 

classic
Z is the classical partition function, which is a function of 

particle mass and moment of inertia; h is Planck’s constant; and ω is the frequency of the librational 

motion, which depends on the mass distribution within the particle. The term 
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is the relative 

quantum-mechanical contribution mentioned in Refs. [11, 12] and is about one percent of the ignored 
classical term

classic
Z .  A similar proportion exists between the other classical and quantum-mechanical 

components of the partition function.  

The classical mass-dependent terms in the partition function are related to kinetic energy, which is a 

function of mass and its distribution through the particle body, not volume.  Consequently, the much 

larger classic partition function, as defined in these works, made no contribution to thermodiffusion in 

the classical approximation, so that only the much smaller quantum mechanical terms yielded an 

expression containing both mass and volume dependence.  In this approach the classical terms in the 

material transport parameters corresponding to kinetic energy of the translational and rotational motion 

are lost.  As discussed in Ref. [16], the theory of material transport in non-equilibrium 

thermodynamics should use chemical potentials as the primary parameter rather than pressure, since 

the fundamental thermodynamic fluxes are expressed through the chemical potentials: 

ln
i

i kT Z
N

μ ∂
∂= −      (2)

 

Here iN  is the number of atoms of the i’th component.  In contrast to Eq. (1), Eq. (2) keeps the mass 

dependence of the classical partition function.  

We have expressed diffusion and thermodiffusion parameters through chemical potentials [16], 

allowing isotope effects in thermodiffusion to be described using both classical and quantum-
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mechanical terms in the partition function, and have found the contribution of the quantum-mechanical 

terms to be marginal. This approach is the standard approach based on non-equilibrium 

thermodynamics, which was refined in Ref. [16]. The only new assumption in Ref. [16] concerns the 

macroscopic pressure gradient in non-homogenous and non-isothermal systems. While most of the 

previous theories where macroscopic pressure has assumed to be constant (see for example ref. [8]), 

we used the general form of the Gibbs-Duhem equation to determine the pressure gradient in the 

mentioned system. The validity of this our assumption will be briefly discussed below. Examples of 

expressing material transport parameters through the temperature and concentration dependence of the 

binary chemical potential can also be found in Refs. [13-15]. However, the final expressions in those 

works express the binary chemical potential through the (non-uniform) excess pressure using the 

Gibbs-Duhem equation, which  causes problems with the mass dependence, as discussed above. The 
binary chemical potential at constant pressure, expressed through the chemical potentials iμ of the 

respective components
 
is 

 

i
iik k

k

v
vμ μ μ∗ = −                                                (3) 

In Refs. [13-15] the binary chemical potential was expressed through the partial excess or osmotic 
pressure osm

iP  using the Gibbs-Duhem equation in the form 

2
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δμ δ
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 (4) 

Here δ  indicates the difference in the parameter between hot and cold reservoirs, sμ and sv are the 

chemical potential and specific molecular volume of the solvent, respectively, P is pressure, and 2φ is 

the volume fraction of the solute.  Parameter s

sv

δμ
 was interpreted in Refs. [13-15] as the difference in 

the pure-solvent partial pressure between reservoirs, and Eq. (4) was rewritten as 

2
2 2

2

osmv
Pδμ δ

φ

∗ =  (5) 

A similar approach was used in Ref. [12], albeit in a more convoluted manner.  

In Eq. (5), a microscopic equation based on Eq. (1) can be used for the osmotic pressure, and 

microscopic Eq. (2) can be used for the chemical potentials.  Working within the framework of 

classical statistical physics, we can say that only the left-hand side of Eq. (5) contains the mass-

dependent classical contribution.  In this situation, the use of the chemical potential is preferable 

because the basic expression for material fluxes iJ


, which can be defined by the non-equilibrium 

thermodynamics expression for entropy production, contains only chemical potentials and not excess 

pressure: 

 
1i

i i i i iQJ n L n L
T T

μ= − ∇ − ∇


 (6) 

Here iL and iQL are the Onsager coefficients. This approach yields a more realistic and broader 

physical picture of thermodiffusion. 
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The theory developed in Ref. [17] uses a kinematic approach, and defines the momentum transport 

in an ideal binary non-isothermal system during particle collisions. All other intermolecular 

interactions are ignored, and the erroneous assumption of constant pressure in the system is used. The 

pressure in a non-homogeneous mixture cannot be constant.   

Mechanical equilibrium in a binary ideal isothermal non-homogenous system is expressed by the 

following form of the Gibbs-Duhem equation: 

( )1 2 2
1 1 2 2 1 2 2

1 2 1

1
v

n n n n kT n n kT n
n n v

μ μ  ∂ ∂∇ + ∇ = ∇ + = − ∇ ∂ ∂  
  (7) 

Here 1n and 2n are the numeric volume concentrations of the two components, 1μ and 2μ are their 

molecular chemical potentials [ ( ) lni i ic kT nμ ≈ ] and 1 1 2 2 1v n v n+ = , where iv are the specific molecular 

volumes. The right-hand side of Eq. (7) represents the non-zero pressure gradient. The equation for 

force balance equivalent to the Gibbs-Duhem equation [Eq. (7)] at constant pressure (that is with the 

zero right-hand part) is erroneously used in Ref. [17] to calculate the mean spacing parameter l, which 

is usually termed the free path length. This parameter is used to make the theory self-consistent. 

However, due to the unrealistic assumption of constant pressure, the theory yields the temperature 

dependence in the spacing parameter ( ) ( )0

0

1
2

l T T
l T

T

 
= + 

 
 that is too strong.  In fact, this parameter 

has very weak temperature dependence in liquids. It is close to the mean distance between the closest 

surfaces of neighboring molecules, and can vary only due to thermal expansion: 

 ( ) ( ) ( )0 01
3
Tl T l T T T

α = + −  
 (8) 

Here 3 110T Kα − −≈ is the thermal expansion coefficient. It is easy to show that with a realistic 

temperature dependence of the free path length, the theory proposed in [17] cannot be made self-

consistent. It yields a mean thermal force that always drives the particle along the temperature gradient 

toward the cold side. Consequently, the theory cannot explain observations of thermodiffusion toward 

the hot side. Instead, Ref. [17] uses two fitting parameters to fit the theoretical linear curve to 

experimental data on isotope effects. Only by extrapolation with fitting parameters is thermodiffusion 

to the hot side explained.  

Thermodiffusion isotope effects have been the subject of computations using molecular dynamics 

([10,18,19]). Using fitting parameters or simplifying assumptions, these computations yield results 

close to experimental data. These works also yield a reasonable dependence of the thermodiffusion 

isotope effect on the difference in the particle mass and in the moment of inertia. However, the 

computations include questionable assumptions and fittings, and contradictions exist between the 

results of different works. In Ref. [10], for example, the results were obtained for a model having a 

four-fold difference in mass. The data was then extrapolated to a more realistic mass difference of 

several percent, and an acceptable agreement with experimental data was obtained. The authors 

assumed a linear dependence of the isotope effect on relative mass difference throughout the range of 

the mass differences, which is difficult to accept because it is known that a linear dependence may be 

assumed for only very small relative mass differences. In Ref. [18], the dependence of the isotope 

effect on the relative mass difference is shown to be strongly non-linear, with the results yielding good 
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agreement with empirical data on mixtures of n-pentane/n-decane.  In Ref. [19] the dependence on 

mass difference was also shown to be strongly non-linear.  

Another problem with these works is the fitting values for the energetic parameters that were used 

in the computations. The authors calculated energetic parameters that were typically less than kT, 

while common sense and the direct comparison with molar enthalpies of organic solvents [20] indicate 

that these parameters should be on the order of several kT at room temperatures. 

A. The thermodynamic Soret coefficient. 

For calculating the concentration distribution we use standard mass transport equations of non-

equilibrium thermodynamics with restrictions placed on the Onsager kinetic coefficients necessary to 

providing the unique solution that is independent of the specific selection of which component is 

labeled as the solvent [16]. These restrictions yield a relationship that expresses the heat of transport 

through the chemical potential of the respective component. Next, the chemical potentials are 

calculated using statistical mechanics. The general mass transport equation for component i in an N-

component mixture is 

                  1 1

1

2

2

N N
ij ij

j j j k
j k k

N

k k k
k

i i i
v D T

T

v D

D
t kT

μ μ
φ φφ

φ

φ φ
∗ ∗

= >

=

 
 
 
 

∂ ∂
∇ + ∇∂ ∂∂ =∇∂

 


                       (9) 

where t is time, iD  is the Stokes-Einstein diffusion coefficient, iv the specific molecular volume, and 

i i in vφ = is the volume fraction of the respective component. Eq. (9) is a system of equations requiring 

knowledge of each component. For liquid silicates, most of the required parameters are unavailable. 

Therefore, we will consider only dilute isotope components in this analysis.  

When the volume fraction of a component is small, we can ignore its contribution to the properties 

of the system, as well as interactions between isotopes. In this case, the concentration dependence of 
parameter ikμ∗  can be written as ln ikT φ  [8, 9] and the mass transport equations take the following 

form: 

                  
2

i i
ii

i D T
kT Tt
φ μφφ ∗ 

 
 
 
 

∂∇ + ∇
∂

∂ =∂                        (10) 

The Soret coefficient that characterizes the concentration distribution in stationary quasi-dilute non-

isothermal systems can be defined as 

 
2

i i
T

i

iS
T

T

kT

φ
φ

μ∗∇
= −

∇
∂ ∂=

  

 (11) 

where iμ∗ is the quasi-binary effective chemical potential related to the solvent medium. Detailed 

discussion on this thermodynamic approach can be found in [21]. Similar expressions for the Soret 

coefficient can be obtained using the methods used in Refs [12-15]. 

For a dilute component in a liquid solvent, the chemical potential at constant volume can be 

calculated as [22, 23] 
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iV i i

R

g r
d r r dr

v

λ
μ μ π λ

∞

= + Φ     (12) 

Here, R is the particle radius and r is the distance between a molecule of liquid and the center of the 
solute; ( )1 ,ig r λ is the pair correlative function, which expresses the probability of finding a molecule 

of liquid at 1r


( 1r r=  ) if the internal molecule or atom is placed at 0r = ;  

and ( )1i rΦ is the respective intermolecular potential. Parameter  

 0 2

3 2
ln ln

2
i

i i i

m kT
kT v kT

h

πμ φ  = −   
   (13) 

is the chemical potential or free energy of a non-interacting solute ( ( )21 2 1 0r rΦ − = 
) and h is Planck’s 

constant. Parameter λ  describes the gradual “switching on” of the intermolecular interaction. A 

detailed description of this construct can be found in Refs. [22, 23]. Without information on moments 

of inertia we will, for the present, ignore the contribution of rotational motion. The chemical potential 

of the solvent particle is written in a similar way.  

From Eqs. (12) and (13) it is clear that Eq. (11) can contain classical terms independent of the 

system volume but dependent on mass.  This possibility means that classical isotope effects in the 

mass transport described by Eq. (11) are lost with the use of Eqs. (1) and (5). Only the erroneous use 

of partial osmotic pressure as the governing parameter in thermodiffusion allows one to ignore the 

classical mass-dependent terms, independent of volume.  

B. Statistical-mechanical expression for the Soret coefficient. 

The mass of the atom or molecule is contained in terms of the partition function and chemical 

potential related to translational and rotational kinetic energy. This approach has been used for a 

qualitative explanation of isotope effects in the thermodiffusion of deuterium-substituted hydrocarbon 

isotopes [24]. In that work, the role of molecular symmetry in isotopic substitution was shown to be 

important in the explanation of empirical data. That work and the work in Ref. [25] demonstrates the 

utility of using classical expressions for relevant microscopic parameters to account for isotope effects 

in measured Soret coefficients, without the need to invoke quantum-mechanical contributions. 

In the following calculations, we will use the approximation  

 ( )21 , 1g r λ =                                                    (14) 

This approximation assumes the local distribution of solvent molecules is not disturbed by the particle 

under consideration, and has been widely and effectively used in theories of liquids. In Refs [26-28], 

for example, the approximation was used in a kinetic approach to the thermodiffusion of colloidal 

particles. In Refs [29-31] it was used in a hydrodynamic approach to the thermodiffusion of polymer 

solutions. The approximation of constant local density is also used in theories of regular solutions [32] 

and leads to the following equation: 

 
( ) 21

0
1

4 i
iV i

R

r
r dr

v
μ μ π

∞ Φ
= +                               (15) 

The last term on the right-hand side of Eq. (15) is identical to the expression obtained in Refs. [26-28].  
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In Eq. (3), parameter 
1

1
V

iv
v μ   can be written as

1i V
N μ , where Ni is the number of solvent molecules 

displaced by the respective particle. Parameter 1i VN μ  can be thought of as the chemical potential of a 

virtual particle having the same size as the atom or molecule of the i’th isotope, while the remaining 

parameters are equated to those of a virtual particle of Ni solvent molecules that have been replaced by 
that isotope. Using the above symmetry between parameters iVμ  and 1i VN μ , we can write the effective 

chemical potential at constant volume as 

                           
( ) ( ) 21 11

1
1 1

3
ln 4

2
ii

iV i V
i R

r rm
N kT r dr

N m v
μ μ π

∞ Φ − Φ 
− = − + 

 


 
(16) 

Eq. (16) indicates that isotope effects are more pronounced for particles of a molecular size in which 

the chemical potentials of the non-interacting particles are comparable to the terms related to inter-

particle interactions. For larger particles these effects are masked by contributions from the interaction 

between particles. The increasing effect of particle interactions with size is confirmed by simulations 

of thermodiffusion of nanoparticles in Ref. [33], where the thermodiffusion parameters are 

independent of particle mass.  

C. Chemical potential at constant pressure. 

In thermodynamic and kinetic mass transport equations, the chemical potentials are typically 

expressed at constant pressure. The chemical potentials at constant pressure and volume for a 

suspended molecular or colloidal particle can be related through the forces acting on the particle:  

       
i

out

loc
iP iV i

V

dvμ μ∇ = ∇ + ∇Π                                      (17) 

Here loc
iΠ is the local distribution of the excess pressure around the particle. In deriving the local 

excess pressure we follow the method outlined in Ref. [34]. The local pressure distribution is widely 

used in hydrodynamic theories of kinetic effects in liquids [29-31] and is usually obtained from the 

condition of local mechanical equilibrium in the liquid. This equilibrium condition is written 
as ( )1 1 0loc

i ir v ∇ Φ + Π =   and can be obtained by formulating the condition for local equilibrium in a 

thin spherical layer of thickness l and area S when that layer is shifted from position r to r+dr. The 

resulting change in free energy is defined as 

 ( ) ( )1

1

0loci
i

r
dF r lSdr

v

Φ 
= ∇ + ∇Π = 

 
            (18) 

In such a closed layer, there is also a change in free energy 
( )1

1

i r
ldS

v

Φ

 
associated with the change in 

layer area dS . For a spherical layer, the change in volume and surface area are related by 2dV rdS=  

and we obtain the following modified form of Eq. (18) for a closed spherical surface:   

 

         
( ) ( )1 1

0
1 1

2
0loci i

i

r r
r

v v r

Φ Φ 
∇ + Π + = 
 


                 (19) 

where 0r


is the unit radial vector.   
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The pressure gradient related to the change in surface area has the same nature as the Laplace 

(surface) pressure gradient obtained in Ref. [8].  Solving Eq. (19), we obtain  

 
  

( ) ( )1 1

1 1

2 '
'

'

r
loc i i
i

r r
dr

v v r∞

Φ Φ
Π = − −                         (20) 

Substituting Eq. (20) into Eq. (17), using Eq. (16), and calculating the temperature-induced pressure 
gradient related to the temperature dependence of the solvent specific molecular volume 1v , we obtain 

the following potential gradient related to intermolecular interactions: 

 

( )1

1

'2
'

'i
out

r
iiP T

V

r
dv T dr

T v rϑ
μ α

∞

Φ∂ = ∇
∂  

         

(21) 

Here, Tϑ∇  is the component of the temperature gradient tangent to the surface of a spherical particle 

and Tα is the thermal expansion coefficient of the solvent. Applying the same procedure to the virtual 

particle that consists of liquid displaced by the solute, we obtain  

                                

( ) ( )2
2 1 11

1 1

' '2 3
' ln

' 4

r
i iT i
T

iR

r r m
S r dr dr

v kT r T N m

π α ∞

∞

Φ − Φ  
= −  

 
                            (22) 

The molecular interaction potentials of the solute and virtual particle can be defined by the London 

potentials [35] as 

 ( )6

1 1 1i i i rε σΦ = −                                            (23) 

Here, 1iε is the energy of interaction and 1iσ is the minimal atomic approach distance. In the integration 

of Eq. (21), the lower limit is 1iR σ= . The potential 11Φ is determined in a similar manner, with 

11 1iσ σ= and parameter 11ε  the energy parameter for interaction between a virtual particle and the 

solvent molecule. 

2. Theory of Isotope Effects 

Using Eqs. (22) and (23), the molecular Soret coefficient can be written as 

             0

1

3
ln

4
i i i
T T

i

m
S S

T N m

 
= −  

 
                              (24) 

where 

     
( )

1

2 3
11 10

19
iT ii

TS
v kT

π α σ ε ε−
=            (25) 

is the contribution to the Soret coefficient associated with intermolecular interactions.  

Studies of isotopic effects in thermodiffusion involve measurements of the following  

parameter [1-7]: 

 
( ) ( )
( ) ( )

0

0
1i i

j j

l

lij
φ φ
φ φ

δ = −            (26) 
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where iφ  and jφ  are the volume fractions of the respective isotope components at points 0 and l along 

the temperature gradient. At small temperature intervals, parameter ijδ can be expressed through the 

Soret coefficient ST of the respective component [1-7]: 

 ( ) ( ) ( )0i j
T TS S T l Tijδ − −  = −            (27) 

The definition of parameter ijδ  used in Eqs. (26) and (27) allows for the elimination of factors that are 

identical for the two isotopes. However, determining the factors that are relevant is a non-trivial task, 

which we consider below.  

When differences in the relevant parameters are small, Eqs (24) and (25) can be used to express the 

difference in Soret coefficients for isotopes: 

  
( )3 3

11 11 10
lnln ln 3

 1
4

ji j j i j ji j j
T T T

i i

m m m m
S S S

m m m m m T

ε εσ σ ∂ −  − ∂ − ∂
− = − − −    ∂ ∂ ∂    

                     (28)  

The terms in brackets related to inter-molecular interactions are non-zero when the molecular volumes 

and/or energetic parameters of the isotopes are different. The fact that such size differences are 

significant is demonstrated by the ability to separate isotopes in liquids by diffusion, and such 

differences have been explained by differing bond length [37]. The dependence of diffusion 

coefficients on atomic mass has been shown to fit the following equation [36]: 

ji

j i

MD

D M

β
 

=  
 

            (29) 

where β is an empirical dimensionless parameter. This size dependence may be another classical 

mechanism of isotope effect in thermodiffusion.  Using Eq. (29) and the Stokes-Einstein expression for 

the diffusion coefficient, and assuming the hydrodynamic radius and the minimal atomic approach 

distance in Eq. (23) are proportional, we can write 

1

1

i i

j j

M

M

β
σ
σ

 
=   
 

           (30) 

Using Eq. (30), Eq. (28) can be written as 

    

0 3 3
3

4 4
i ji j j

T T T
i

m m
S S S

m T T
β

−   − = + −    
                         

(31) 

Eq. (31) can be used to compare predictions of the model with empirical data. In this comparison, we 
use the approach used in Refs [1-7], where parameter ijδ in Eq. (25) is expressed as 

 

    0
0

0

i j
ij

i j

m m T T

m m T
δ α

− −= −
+

                (32) 

Here 0α is an empirical parameter that is either calculated numerically or obtained from experimental 

data in the literature. Comparing Eqs (32), (30), and (31), we obtain the following theoretical 
expression for 0α in systems where the difference in isotope mass is small and the temperature range is 

narrow: 
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0
0

3 3
6

4 4
j

TTSα β  = + − 
 

                 (33) 

There are also the data regarding the mass dependence of the energetic parameters [38, 39]. However 

there is no specific information regarding the silicate melts. For this reason we assume that the mass 

dependence of the isotope energetic parameters is also described in the similar way as the isotope 

molecular size [see Eqs (29-30)]. This approach yields the modified Eq. (33): 

0
0

9 3
8

16 4
j

TTSα β  = + − 
 

                  (34)  

In the comparison with the empiric results, we will use both Eq. (33) and Eq. (34) to obtain the best 

fitting.  

3. Results 

Eqs (33) and (34) can be used to calculate  0 j
TS  in the Soret coefficient related to intermolecular 

interactions. In turn, the calculated values of 
 

0 j
TS  can be used to calculate the respective Soret 

coefficients from Eqs. (24) and (25). The resulting Soret coefficients are calculated using the 

assumption that 
1 0

ln lni i

i

m

N m

ρ
ρ

 
≈ 

 
 in Eq. (25), where iρ is the density of the respective element and 

0ρ  is the density of the solvent medium:  

     0

0

3
ln

4
i i i
T TS S

T

ρ
ρ

= −                  
  

     
 

     (35) 

The values of parameter E=2β were collected from several sources, but are summarized in Ref. [36]. 

Eqs. (33-34) are now used to evaluate predictions of the proposed model. The most direct way to do 
such an evaluation is to calculate values of parameter 0α  by substituting the value of the Soret 

coefficient predicted from Eq. (34) into Eq. (33). However, it is difficult to find a consistent set of the 
parameters i

TS , 0α , and β , as the variance in data from different sources for the same system is quite 

large.  Consequently, we calculated values of the Soret coefficient using known experimental values δ  
and β , and compared the calculated values with experimental values from other experiments. 

In these calculations, the values of parameter δ  were taken from Ref. [1] (sample ZM98B), where 
the data for isotopes dissolved in basalt are collected. The values of β  for basalt-rhyolite are taken 

from Ref. [36] and the experimental values of i
TS  for comparison are obtained from Ref. [37]. The 

values of the Soret coefficients are obtained by the graphical differentiation of the experimental plots 

in [37]. 

Values of the Soret coefficients calculated using Eq. (31) were obtained with the assumption that 
the density of the basalt is 3

0 3.0 /g cmρ = . The densities of the isotopes are assumed to be equal to 

those of their melts: 36.98 /Fe g cmρ = , 31.55 /Ca g cmρ = , and 31.75 /Mg g cmρ = . In calculating the 

Soret coefficient, we assumed that differences between isotope parameters are negligibly small. The 

comparison of the theoretically calculated Soret coefficients and the experimental values is 

summarized in Table 2. 



11 

Table 1. Literature values of parameters. 

Isotope 

Pair 

Separation factor δ  

from Ref. [1] (10-3) 
β  [27] Calculated factor 0α  

[ Eq. (32)] 

Density of isotopes, 

g/cm3 

56Fe/54Fe -0.38 0.03 0.137 6.98

44Ca/40Ca -2.28 0.075 0.239 1.55

26Mg/24Mg -1.73 0.05 0.376 1.75 

Table 2. Comparison of Theoretical Model with Empirical Data* 

Isotope Pair 
Calculated Soret coefficient  

(103 K-1) 
Experimental Soret coefficient  

(103 K-1) [37] 
56Fe/54Fe 2.5 -2.6** 1.9 – 2.5 
44Ca/40Ca 1.1 – 1.2 0.5 – 0.7 

26Mg/24Mg 1.9 - 2.0 1.6 – 1.9 
*The density of basalt is assumed to be 3.0 g/cm3. 

**Calculated using Eq. (34). The other two values are calculated taking into account the mass dependence of 

energetic parameter [Eq. (35)]. 

Considering the parameters we used were taken from different sources, that the complex 

composition is considered a simple quasi-binary system because the component parameters are 

unknown, and that very coarse approximations for the parameters of the virtual particle were used, the 

agreement between experiment and theory is sufficient to conclude that the model is reasonable.  

4. Conclusions 

In conclusion, the theory developed in Refs. [16, 24, 34] yields an adequate description of isotope 

effects in thermodiffusion in silicate melts, providing reasonable values of the Soret coefficients given 

the coarse approximations utilized. The model based on classical statistical mechanics relates isotope 

effects in thermodiffusion to differences in the thermal velocities of isotopes having the same thermal 

energy but different masses and sizes, which is not possible using methods described previously. 
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