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Abstract: Contemporary water distribution networks exploit information communication 

technologies (ICT) to monitor and control the behavior of water network assets. Limited 

capability and typically battery powered low-resourced devices, such as smart 

meters/sensors, have been used to transfer information from the water network to data 

centers for further analysis. Many water companies deploy devices aiming to last beyond the 

10-year mark. This prohibits the use of high-sample rate sensing therefore limiting the 

knowledge we can obtain from this data. However, data reduction techniques with minimal 

information loss can overcome this problem. In this paper, we present a self-adaptive scheme 

that reduces the amount of transmitted data, thus extending the battery life of sensor nodes, 

while still maximizing the received information to data centers. To achieve these goals, we 

exploit the power of compressive sensing (CS), which enables significant compaction of the 

original information content in a few random incoherent projections. Sparsity of the recorded 

data streams, which is a necessary condition for successful CS reconstruction, is achieved 

via the transformation of the original data into an appropriate transform domain. Using over 

170 days of real high-sample rate water pressure data from 25 sensor nodes of our large scale 

testbed in the Bristol area, we verify the efficiency of our CS-based algorithm in significantly 

reducing the data volume, and thus extending the battery life of sensor nodes. In addition, 

we demonstrate that our system supports self-tuning and automatic reconfiguration as the 

nature of incoming data changes over time. 
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1. Introduction 

In recent years, there is a trend for water utility companies to create smart water networks [1, 2], in 

order to improve the quality of service, reduce water waste through balancing the water supply and 

demand, and minimize maintenance costs by increasing the network resilience. The work presented in 

this paper is part of a Smart Water project that both monitors water distribution networks (WDN) and 

controls its valves to optimize water network performance and lifetime over varying demands. A large 

scale testbed, which consists of 25 sensor nodes, was implemented in Bristol Water utility company 

water network shown in Figure 1. Each sensing device records, analyzes, and transmits high sample rate 

water pressure and flow data (up to 128 samples per second) of District Metering Areas (DMAs) to a 

data processing center for further analysis. These high sample rates result in ever increasing amounts of 

data, thus making in-node data processing, such as compression, a necessity prior to storage or 

transmission. Under this context, in the past, we have examined, evaluated, and deployed lossless 

compression techniques [3] in our sensing devices, which reduce transmitted data and consequently 

extend battery life proportionally. In this paper, we introduce contemporary lossy compression 

approaches and examine their efficiency. 

 

Figure 1. Bristol area testbed and pressure data from 4 sensor nodes. 

For decades, the sampling process has been largely dominated by the classical Nyquist-Shannon 

theories. However, several studies have shown that many natural signals are amenable to highly sparse 

representations in appropriate transform domains (e.g., wavelets and sinusoids) [4, 5]. Compressive 

sensing (CS) provides a powerful framework for simultaneous sensing and compression [6], enabling a 

significant reduction in the sampling and computation costs on a sensor node with limited memory and 

power resources. According to the theory of CS, a signal having a sparse representation in a suitable 

transform domain can be reconstructed from a small set of incoherent random projections.  

In this study, the advantages of CS are exploited for onboard compression and recovery at a base 

station of high-resolution pressure data recorded by sensors deployed in a water distribution network. 

Our experimental evaluation reveals the high performance of our proposed approach, when compared 

with lossless compression schemes such as [3], in terms of achieving much higher compression ratios, 

while maintaining highly accurate reconstructions of the original sensor data. Additionally, to our 
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knowledge, this is the first time that CS is being adapted as a compression technique to Smart Water 

Network high resolution data.  

The rest of the paper is organized as follows. Section 2 describes the methodology of applying CS in 

water data. Section 3 presents our evaluation, while Section 4 concludes this paper and gives directions 

for future extensions. 

2. Methods  

In this section, the design characteristics of the two main components are described, namely, the CS-

based module for resolution pressure data (up to 128 samples per sec) compression, which executes on 

the sensor nodes (see Figure 2 left part), and the decompression module that reconstructs the data, which 

is implemented on a base station where all the sensor data are gathered (see Figure 2 right part). 

 

Figure 2. Information transformation flow diagram. 

2.1. CS-based Data Compression 

Let શ ∈ ℝ୒ൈ୐ be a matrix whose columns correspond to a transform basis, in general overcomplete 

(i.e.	N ≤ L). In terms of signal approximation, it has been shown that if a signal ܠ	 ∈ 	ℝ୒ is K-sparse in 

basis શ, meaning that the signal is exactly or approximately represented by K elements (columns) of 

this basis, then it can be reconstructed from M = ࣩ ቀK	 log ቀ୒୏ቁቁ non-adaptive linear projections onto a 

second measurement basis, which is incoherent with the sparsity basis1 [6, 7]. The general measurement 

model in the sparsifying transform domain is expressed as ܡ = 	઴ܠ = ઴શ୘ܟ ∈ ℝ୑  , (1) 

where ܡ	 ∈ 	ℝ୑ is the vector of compressive measurements, ઴	 ∈ 	ℝ୑ൈ୒ is the measurement matrix 

whose columns are random vectors with independent and identically distributed (i.i.d.) components (i.e., 

each random component has the same probability distribution as the others, and the occurrence of one 

does not affect the probability of the other), શ୘ denotes the inverse transform, and ܟ	 ∈ 	ℝ୐ is the sparse 

coefficient vector. Typical examples of measurement matrices, which are incoherent with any fixed 

transform basis with high probability (universality property [7]), include random matrices with i.i.d. 

Gaussian or Bernoulli entries.  

2.2. CS-based Data De-Compression 

By employing the M compressive measurements and given the K-sparsity property in the transform 

basis, the original signal ܠ can be recovered by solving an appropriate constrained optimization problem. 

Commonly used reconstruction techniques are based on convex relaxation [6] and greedy strategies (e.g., 

                                                 
1 the vectors of the measurement basis are not statistically correlated with the vectors of the sparsity basis 
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Orthogonal Matching Pursuit [8]). In this study, the NESTA algorithm is used, which was shown to 

achieve a very good trade-off between reconstruction accuracy and computation time [9]. We emphasize 

that the scope of this paper is to illustrate the efficiency of the CS framework in achieving highly 

compact, yet very accurate, representations of real high-resolution sensor data recorded in water 

distribution networks. As such, an exhaustive comparison with the various reconstruction algorithms for 

finding the optimal solution is left as a separate study. 

Focusing again on the optimization problem to be solved for reconstructing the original data, NESTA 

solves a synthesis-based problem of the following form: minܟ ∈ℝై‖ܟ‖ଵ 		subject to ܡ‖ −઴શ୘ܟ‖ଶ ≤ ϵ  , (2) 

where ‖∙‖ଵ, ‖∙‖ଶ denote the l1 and l2 norm, respectively. Having estimated the sparse coefficient vector ܟෝ , a reconstruction of the original signal is simply obtained by taking the inverse transform, that is,  ܠො = શ୘ܟෝ  . (3) 

In the subsequent experimental evaluation, the discrete wavelet transform (DWT) [4] will be applied 

on the raw sensor data due to its computational efficiency and sparse representation accuracy. However, 

we note that the CS-based approach expressed by Eqs. (1) – (3) is generic and can be applied with 

alternative sparsifying transformations, other than the DWT. 

3. Results and Discussion 

In this section, the performance of the CS-based approach is evaluated and compared with well-

established lossless compression techniques for compressing data streams recorded by a set of sensors 

deployed in the Bristol Water water distribution network. More specifically, the available dataset 

consists of high sample-rate pressure data (64 samples per second) from 25 sensor nodes for a 170-day 

period. For sake of brevity, this section presents the evaluation results for four pressure data streams 

from an equal number of sensor nodes as shown in Figure 1. 

In the first test case, as [3] describes, data compressed using various lossless compression techniques. 

The applicable compression method for the current hardware infrastructure was MiniLZO [10], which 

uses sliding window as coding method (LZ77). We repeated the experiments in [3] by dividing each 

pressure data stream into non-overlapping windows of length	N = 1024 (or, equivalently, 1024/64 = 16 

sec) and applied MiniLZO algorithm for each data chunk by achieving 55% average compression rate. 

Despite the fact that lossless compression allows the original data to be perfectly reconstructed from 

the compressed data, this is typically achieved at lower compression rates. To overcome these 

limitations, the acquired data are compressed via highly reduced sets of random measurements (ref. Eq. 

(1)) and reconstructed by solving the constrained optimization problem expressed by Eqs. (2) – (3). To 

this end, each pressure data stream is divided again into non-overlapping windows of length	N = 1024. 

Then, a multi-scale decomposition in 10 levels is applied on each window using the DWT with the “db4” 

wavelet function. Subsequently, the resulting wavelet coefficients are projected onto the rows of a 

measurement matrix ઴ with i.i.d. standard Gaussian entries (mean 0, and standard deviation 1). The 

efficiency of the proposed CS-based scheme is tested for a varying number of measurements, that is 

rows of ઴, M = 	ρ ∙ N, where ρ	 ∈ {0.25, 0.35, 0.45, 0.55}. This is equivalent to compressing the data in 

each window at compression rates {75%, 65%, 55%, 45%}, respectively.  
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The reconstruction accuracy is measured in terms of the root mean squared relative error (RMSRE). 

Specifically, if ܠ and ܠො are the original and reconstructed data, respectively, their RMSRE is defined as  

RMSRE(ܠ, (ොܠ = ඨଵே∑ ൬௫ೕି௫ොೕ௫ೕ ൰ଶே௝ୀଵ   . (4) 

Figure 3 shows the RMSRE, averaged over all individual windows, as a function of the CS sampling 

rate for each one of the four nodes. As it can be seen, the reconstruction accuracy is already high even 

for high compression rates (75%), whilst it improves (that is, the RMSRE decreases) as the compression 

rate decreases (or, equivalently, the CS sampling rate increases). 

 

Figure 3. Average RMSRE as a function of the CS sampling rate for the four nodes node 1, 

node 2, node 20, node 21 (N = 1024, “db4”). 

Finally, to illustrate the approximation accuracy of the original pressure data, Figure 4 shows 

segments of the original and reconstructed data streams for sensor node 2. As expected, the 

approximation accuracy improves as the CS sampling rate increases (see Figure 4b); however, a highly 

accurate reconstruction is achieved even for low sampling rates (see Figure 4a – approximately ±0.0025 

mH2O error) with a result of significantly higher compression rates than lossless approached which was 

55% and consequently proportional battery life extension. 

 

Figure 4. Original and reconstructed segments for sensor node 2 using the NESTA algorithm 

for (a) 2300 samples (~36 sec) and (b) 19 samples (~296 msec). 
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4. Conclusions/Outlook 

In this study, the power of compressive sensing was exploited for achieving high compression rates, 

yet high reconstruction accuracy, of real high sample rate data captured by a set of sensors deployed in 

Bristol Water water distribution network. The experimental evaluation revealed a superior performance 

when compared with well-established lossless compression algorithms. 

The current approach employs a fixed sparsifying transformation for the sensor data. However, the 

degree of sparsity can be increased by employing an adaptive sparse representation. To this end, the 

framework of dictionary learning can be exploited, in conjunction with a joint sparsity assumption to 

account for correlations either between the windows of each individual data stream or between distinct 

data streams. Finally, a CS-based approach could be exploited for designing algorithms to detect 

abnormal sensor behavior by employing the random compressed measurements directly. 
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