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Abstract: One of the main concerns in the Security and Defense area is to identify quickly
and reliably different in-flight targets, especially in hostile scenarios. A non-cooperative
classification system could identify targets at long range and under conditions of poor
visibility without requiring aircraft collaboration. According to that, to face this problem,
an approach to Non-Cooperative Target Identification based on feature extraction techniques
applied to High Resolution Range Profiles is presented. The identification methodology
is conducted by comparison of a collection of range profiles of a unknown target, namely
test set, with a pre-loaded database of known potential signatures, namely training set. In
order to evaluate the performance of the presented algorithms, range profiles are obtained
through numerical simulation of seven civil aircraft at defined trajectories taken from an
actual measurement campaign. The most evident issue of using synthetic signatures instead
of measured profiles is that simulated profiles implies an ideal recognition scheme, since
datasets have the same high quality. So as to confirm the validity of the approach, additive
white Gaussian noise has been considered to the profiles in the test set.
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A High Resolution Range Profile is the projection onto the radar line of sight of the radar energy
returned by a moving aircraft. HRRP is a one dimensional image which represents the target reflectivity
into the range domain. Each profile consists of a number of range bins that contain the distribution of
the different reflecting parts, or scattering centers of an illuminated target, supplying information about
its structure [1]. According to that, this information, different for each target, is suitable for automatic
recognition since it depends on its geometry. Radar recognition has received intensive attention from
the NCTI community, since it permits to recognize targets at long distance and under poor visibility
conditions without the need of communication with targets and even with them being unaware of it [2].
Non Cooperative Target Identification (NCTI) by radar relies on a comparison between the measured
target signatures and a reference database [3–5]. This can carried out by different techniques, including
Jet Engine Modulation (JEM), HRRPs and Inverse Synthetic Aperture Radar (ISAR) images. JEM do
not provide an all aspect identification capability, since the aircraft should be in an aspect angle such that
the radar energy can be scattered back by the engines. Furthermore, high Signal to Noise Ratio (SNR)
is desired, so the range at which aircraft can be recognized is reduced. Even if HRRP and ISAR images
give an all aspect classification, the processing to obtain ISAR is very complex and time consuming, so
NCTI techniques based on HRRPs are the most suitable option.

In this research, a NCTI system based on the exploitation of feature extraction techniques is presented.
The process is carried out using a sequence of consecutive profiles so as to obtain information about the
evolution of the position of the scattering centers along each trajectory. Two collections of synthetic
HRRPs are considered, the profiles corresponding to the target to be identified, namely test set, and the
ones that populate the database, namely training set.

2. Identification Methodology

The objective of the feature extraction techniques is to reduce dimensionality of the problem by
keeping the valuable information. In this research, in order to model each aircraft as a subspace and
to reduce the unsought information Singular Value Decomposition is applied to a matrix of profiles,
to extract the main features of both sets. SVD is a powerful technique for the factorization of any
matrix into orthogonal subspaces [6]. Let be a matrix of aligned and consecutive range profiles, X ∈
<N×M (assuming N the number of range bins greater than the total number of profiles, M ), there exists
orthogonal matrices such that X = UΣV T . The columns of U ∈ <N×N and V ∈ <M×M are the ith left
and ith right singular vectors respectively while σi are the singular values of X contained in descending
order in the diagonal matrix Σ ∈ <N×M . The left singular vectors in U , ui, span the orthogonal basis
space in the range domain while right singular vectors in V , vi, span the angle domain. Since HRRP
represents the radar energy into the range domain, only ui will be used. The higher the value of σi, the
higher the contribution of its corresponding ui in forming the target signal [6]. Therefore, SVD permits
to define two subspaces: a signal subspace, which contains the valuable information and is spanned by
the prominent singular vectors; and a noise subspace, which include the negligible data and is spanned
by the rest of the singular vectors. The division into signal and noise subspace is defined by an energy
threshold, η =

∑K
i=1 σi∑p
i=1 σi

, in order to determine the most significant ui and to discard the noise subspace.
This way, denoting the signal subspace as XR with the K first ui of the test set and the usi as the ith left
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singular vectors of each aircraft s in the training set, the accumulated weighted angle between XR and
usi is given by (1) [4]. The angle is weighted such that the singular value, σsi , associated with the left
singular vectors sets the significance of this angle in the final solution. Conclusively, the aircraft, s, of
the training set that minimizes the angle between signal subspaces will be the aircraft that the radar is
illuminating.

FW (k) =
1∑p
j=1 σ

s
j

k∑
i=1

σsi · 6 (XR, usi ) ; k = 1, . . . , K (1)

Since an energy threshold, η, is needed to define the signal subspace, the proposed algorithm FW

involves the issue of properly define the dimensionality of the subspace. It is difficult to determine
this dimensionality, so in order to avoid it, the Generalized Mutual Subspace Method (gMSM) [5]
is presented. This method introduces a softweighting on the basis vectors composing the subspace.
The basis are combined via this softweighting to measure the subspace similarities without definitely
setting their dimensionality. Afresh, since the objective is to keep the valuable information, first, a
feature extraction technique is applied to reduce the dimensionality of the problem, in this case, the
eigendecomposition. The matrix X can be decomposed by X = V ΛV T , where V ∈ <N×N is a matrix
containing the eigenvectors and Λ ∈ <N×N is a diagonal matrix containing the eigenvalues, λi. SVD
and eigendecomposition are highly related; the nonzero singular values of X are the square roots of the
nonzero eigenvalues of XTX or XXT . Both techniques allow the extraction of the main features by
reducing the dimensionality. Nevertheless, the fundamental difference between them is that SVD uses
two different bases, U and V ; while eigendecomposition uses just one, the eigenvectors in V . Once
again, the higher the eigenvalue, the higher the amount of information of the target contained in its
associated eigenvector. Accordingly, eigenvectors with high eigenvalues associated will belong to the
signal subspace and those with low eigenvalues will form noise subspace.

While in FW the subspace dimensionality is defined by setting an energy threshold η, in this case
the concept of softweighting tries to avoid this parameter. Softweighting gives importance to all
the eigenvectors, in a way that all the eigenvalues will be weighted by a transformed value of the
corresponding eigenvalues, by Ω = min

[
λ

λmm
, 1
]
. The m first values of the diagonal matrix Ω will

be the unity and the rest will be proportionally decreasing with the mth eigenvalue. By adding the
softweighting, the importance of each eigenvector as a basis of the subspace is set. After defining the
value of parameter m and taking into account the diagonal matrix Ω of both sets, SVD is applied to
V T
R · VS as in (2). Where Q′

R, Q
T ′
S are the matrices of singular vectors and Θ

′
RS is the singular value

diagonal matrix whose elements represents the canonical angles’ cosines.

ΩR · V T
R · VS · ΩS

SV D−−−→ Q
′

R ·Θ
′

RS ·QT ′

S ; (2)

Here, the similarity measure will determined by the squared trace of Θ
′
RS , that is sRS = tr(ΘRS)2.

The higher the sRS , the higher the similarity between sets. Thus, the algorithm identifies the aircraft of
the database, s, as the one with the highest similarity.

2.1. Data sets
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Two sets from 7 civil aircraft in different flightpaths (Table 1) are used to the identification system.
Test and Training samples are synthetically obtained with a computer software for all the orientations
(aspect angles) contained in the flightpaths. In this research, HRRPs are generated by FASCRO [7],
which applies high frequency techniques (Physical Theory of Diffraction, PTD, and Physical Optics,
PO), to find the Radar Cross Section (RCS) of a target. The estimated trajectories come from a civil
measurement campaign called ORFEO [8]. A total number of 22 trajectories are divided into frames for
classification. Each frame (sequence of simulated profiles ordered in time) cover approximately 2.5◦ in
azimuth of the aircraft aspect angle. After the split of the trajectories, the test and the training sets are
defined as matrices of HRRPs of size N ×M with N = 324 number of range bins and M number of
profiles, depends on the trajectory and frame chosen. The principal hesitation of using synthetic profiles
instead of measured HRRPs is that simulated profiles imply an ideal recognition scheme, since datasets
have the same high quality. In order to assess the robustness, additive white Gaussian noise (AWGN)
has been added to the profiles in the test set.

Table 1. Dimensions of aircraft for the RCS prediction.

B747-400 B767-300 A310-300 MD88 Fokker 100 B737-500 Fokker 28
Length (m) 70.66 54.22 46.66 45.10 35.53 31.10 29.61
Wingspan (m) 64.44 47.52 43.90 32.80 28.08 28.90 25.07
Height (m) 16.79 14.77 12.74 7.43 6.58 9.73 6.62

3. Experimental Results

Experiments are carried out by comparison of each aircraft and frame (test set) with the database for
the same frame (training set). The results are assessed and discussed here in order to define the system
as accurately as possible. The main information between the 7 aircraft are contained in their respective
HRRPs; normalization L2-Norm is applied to both sets before the classification takes place to ensure all
profiles have comparable magnitudes.

In order to define the signal subspace dimensionality, the parameters η for FW and m for gMSM,
have been studied to obtain the optimum values. As stated, if a high η is chosen almost all the ui
will be considered as signal subspace, and thus, it may contain data which in fact, is part of the noise
subspace. In the same way, if m is very high, more ui are treated with a softweight of 1. Singular
vectors representing the noise subspace will be probably considered as part of the signal subspace, thus,
recognition performance can be negatively affected. Accordingly, in this research, the chosen threshold
for FW is η = 0.90 and the parameter m for gMSM is m = 1. These values offer a trade-off between
the signal subspace and the recognition rates.

Considering the synthetic nature of the data sets, two case studies are presented in this paper so as to
validate the performance in different identification schemes. Firstly, if comparison of simulated HRRPs
is carried out, FW and gMSM give a great success rate (100%) since both sets have the same nature with
a very clean signature. The most evident uncertainty is the use of synthetic profiles in both datasets, since
this implies an ideal recognition scheme. In order to study the feasibility of the system, white Gaussian
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noise has been added to the profiles in the test set. This way, a more real approach is simulated since
profiles in the test set are observably different from those in the database. An illustration of the difference
can been seen in Fig. 1 where a HRRP of an A310-300 with∞dB (no noise) and −10dB of SNR are
depicted. Recognition rates for different cases of SNR are studied with the aim of demonstrating the
robustness of each algorithm. A lower SNR means that more differences exist between both sets; the
dominant scattering centers are reduced and additionally, when the noise is so prominent, it can be even
confused with scattering centers.
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Figure 1. Variation between test and training sets

The recognition rates of 22 trajectories split into frames with a threshold of η = 0.90 and a value of
m = 1 applying FW and gMSM, can be seen in Table 2. As expected, if no noise is added (SNR =

∞dB) the methodology gives a success rate of 100%, since datasets have the same SNR. The greater
the SNR, the greater similarities between both sets are obtained. This way, better recognition results
are obtained (98.88% for gMSM and 98.48% for FW ), since more scatterers are visible. However, a
lower SNR means that more unwanted information is present. In this study, the results are not severely
influenced by noise; nevertheless when noise is highly corrupting (SNR = −10dB), it causes a decrease
in the recognition rates (91.63% for gMSM and 87.48% for FW ). This means that, for this classification
experiment, better recognition rates are obtained by applying softweighting. In fact, in this case, the
classification performance has been improved 4% approximately by applying the gMSM algorithm. This
means not only a progression in the recognition results, but also encourages us to keep validating the
methodology presented in a real possible scenario.

Table 2. Recognition rates (%)

∞dB 10dB 5dB 3dB 0dB -3dB -5dB -10dB
FW 100 98.48 96.79 96.23 94.62 92.46 90.69 87.48

gMSM 100 98.88 98.15 98.63 97.11 96.23 93.98 91.63

4. Conclusions

In this research, two metrics for NCTI have been presented and compared, FW and gMSM. As
demonstrated, the main objection of evaluating an algorithm with simulated profiles is the ideal
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environment, since synthetic profiles have a very clean signature and real profiles will suffer from
unwanted effects such as noise or clutter. In order to validate the feasibility of the recognition approach,
additive white Gaussian noise to the test set has been applied. By introducing softweighting in the
gMSM algorithm, identification is achieved with no need of previously setting the subspace dimension
unlike the algorithm FW , where an energy threshold is needed to define the signal subspaces. With
the softweighting, an increase in the identification rates has been accomplished comparing with FW .
Considering the difference between the samples when additive white Gaussian noise is added to the
test set, the identification results presented are promising and encouraging. Nevertheless, in an actual
scenario, not only noise is present but also other effects. Thus, future experiments with larger sets and
with additional effects will be conducted to assure the precision of the method proposed here using
measurements of real targets signatures to perform classification.
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