

2nd International Electronic Conference on Sensors and Applications

15 – 30 November 2015, online chaired by Dr. Francesco Ciucci, Dr. Dirk Lehmhus, Dr. Stefano Mariani, Dr. Thomas B. Messervey, Dr. Alberto Vallan

Thomas Messervey – R2M Solution, Italy Domenico Perfideo – R2M Solution, Italy Louise Hannon – National University Galway Ireland Sander Smit – Business Model Change, Netherlands

> Project co-funded by the European Commission within the 7th Framework Program (Grant Agreement No. 619660)

Naternomics

Standards-based methodology for the design and implementation of a water management system

Opening Remark

Thank you for you participation in Session 7

S7: Sensing Technologies for Water Resource Management

We believe we can make business and solve societal challenges through work in this area. If you are not aware, visit <u>www.ict4water.eu</u>.

15/11/2015

About R2M Solution

<u>What</u>: Innovation, Technology Transfer, and Consulting Company

- We stimulate research ideas
- We bring clients to research programs
- We focus research projects toward exploitation
- We consult to bring research results to market

Competitive Advantages:

- Focus on exploitation
- Multi-disciplinarity
- High risk tolerance
- Energy that comes with a young growing company

We are involved in the topic area via our participation in

Pavia Catania London Madrid

15/11/2015

About WATERNOMICS

Project Aim & Objectives

WATERNOMICS will provide **personalized and actionable information** on water **consumption** and water **availability** to individual households, companies and cities in an intuitive & effective manner at relevant time-scales for decision making

- Combining information from various sources & domains to offer contextual water information services
- Making water usage information accessible across devices & locations
- Supporting personalised interaction with water information services
- Enabling sharing of water information services across communities of users
- Demonstrating generic water information services can be used in a variety of environments (i.e. geological, environmental and social)
- Enabling open (collaborative) business models and flexible pricing mechanisms that are responsive to both demand and climate conditions

Expected Impacts

- To introduce demand response and accountability principles (water footprint) in the water sector
- To engage consumers in new interactive and personalized ways that bring water efficiency to the forefront and leads to changes in water behaviours
- To empower corporate decision makers and municipal area managers with a water information platform together with relevant tools and methodologies to enact ICT-enabled water management programs
- To promote **ICT-enabled water awareness** to people using airports and water utilities as pilot examples
- To make possible new water pricing options and policy actions by combining water availability and consumption data

WATERNOMICS INFORMATION PLATFORM

Water Management Apps

- Water dashboards
- Decision support
- water availability/forecast

Support Services

 <u>Simplify</u> linked data consumption via commo<u>n</u> <u>services</u>

Linked Water Data Cloud

 Rich with knowledge and semantics about water usage performance

Data/Meter sources

- Existing operational legacy systems
- Adapters perform the "<u>RDFization</u>" lift to the dataspace

Sensing Technologies in Waternomics

			Typology	Photo	Main characteristics
Data acquisition device and wireless data transmission (BeagleBone Black Board)		The data acquisition platform is to use BeagleBone Black(BBB), a very smart and cost-effective single-board computer. The piezoresistive sensor is immersed in the liquid and transmits the current signal to the display in proportion to the height of the hydrostatic head (water column). For its small size (less than 2 cm in diameter), the "MLS 255" is the ideal device for monitoring the level in areas difficult to access, drilling etc.	Electromagnetic flow meter		It is highly recommended due to its accuracy. And the main controller is well-designed for data collection and for further transmission.
			Ultrasonic flow meter	SE 4	It is highly recommended due to its cost effectiveness and easy installation as highlights. The pair of transducers is clamp-on type so it is unnecessary to make any penetration on the pipe. And the main controller is well-designed for data collection and for further transmission.
Level sensor			Mini water meter		Mini water meter has a hall sensor inside that can output pulse signal. The main features of this mini water meter are small size and simple data collection for the residential and commercial water network. What's more, if needed, the function of temperature measurement can also be added to this mini water meter.
Power consumption meter Open channel flow meter (Raven Eye)		Energy meter is for displaying the consumption of active energy in single-phase systems. The sensor, installed above the flow channel, creates a microwave beam above the surface of the fluid at the centre of the channel. Level measurement is provided by installing a Radar/ultrasonic sensor. Speed measurement is provided by installing a Radar sensor. It's possible to transmit GPRS data to a website.	Turbine water meter	ile o	High degree of accuracy and versatility, it can be utilized for automatic batching, local or remote totalization or remote rate of flow indication.
			Pressure meter		Bridge- or strain-based transducers are a common way of measuring displacement. Sensors using this type of design meet a variety of requirements such as accuracy, size, cost, and ruggedness. Bridge sensors are used for high- and low-pressure applications, and can measure absolute, gauge, or differential pressure.
			Pressure reduction valve		The valve reduces and stabilizes the downstream pressure independently from the flow value and changes in the upstream pressure. It also keeps the pressure upstream of the valve to a predetermined minimum value.
		2nd Latil Electronic Confer			

15/11/2015

Project Pilot Sites

Motivation for Paper

The project features complex infrastructures, multiple sensing technologies, and linked data to make possible analysis for decision making and behavior change.

Water is a tough challenge and it is easier to do nothing.

To put all this together, a standards-based methodology is needed for all stakeholders in the value chain. We've deliberately paralleled the PDCA cycle of ISO50001 to gain immediate familiarity and added an Assess phase to facilitate an initial low-threat exploration to gain commitment. There is also a lot to gain from paralleling lessons learned in the energy sector.

15/11/2015

Full View of the Proposed Methodology

Messervey -

15/11/2015

We've coded the methodology into a TRELLO board

TRELLO is a free online collaboration environment that can be customized. Using it, we are coordinating 15-20 user efforts through the methodology across 4 pilots. Decision makers may find this a useful tool and as part of the final Waternomics Platform, we'll have this clickable environment available as a resource. Each step is explained and has pointers for more information / where to get help.

🔲 Boards 🔗	ρ	II Trello			+ 🕅 Thomas Messervey 🇘
WP5 - Pilot Management and	Imple	mentation - Engineering Build	ding, Galway 🏫 💩 Team Visible	📋 <u>Calendar</u>	Menu ×
Phase 0 - Assessment 📀	Ph	nase 1 - Plan 📀	Phase 2 - Implementation \odot	Phase 3 - Check	AR A 💽 CK 💓 🕋 🗽 EC
INFO ≣		NFO ≣ Ø1 @1	INFO ≣	INFO ≣	IP JM JC LH LH A MS MM
Assess Water Context ≡ ⊠ 0/2		repare Action Plan ≣ ⊠ 0/8		Data Analysis ≣ ⊠ 0/2	<i>₽</i> ₊ Add Members
Conduct Water Audit ≡ ♀1 ⊗1 ☑6/6	De	evelop Baseline JC		System Analysis ≣ ⊠ 0/2	 Change Background Filter Cards Power-Ups
Define Strategy, objectives and KPIs (1)		/ater system modelling ≡ ⊠ 0/4 СК क्वि 👰	Metering Installation and Configuration ≡ ♀78 @18	Assess Performance ≣	···· More
E ♀3 @1 ☑3/3 Define Strategy, objectives and KPIs (2)		lan metering strategy	LH MN 💽 PO SG YL AR 💓 🧖 JM LH	Find and Fix ≣	Saujan Ghimire on Metering Installation and Configuration
		EC JM LH 💽 YL	Water information system deployment (1)	Document Progress	@louiseehannon @yingyinglu @niallchambers
Select Water Efficiency Measures	7	ск	≣ ₽4 @3 СК 😭	E Add a cord	Hi, the vtec BBB in NUIG currently are not recording data locally, due to a situation where when the memory
Add a card		id a card	Add a card	Add a card	was full(usually takes minimum of 6 months) that the script would behave differently, and data would be

Our methodology also features other tools/resources

TRELLO Board

Pictured: Water Value Map

- Water Auditing Tool
- Technology Selection Tool

- Strategy Selection Tool
- Minimal Data Set Method
- Water Value Map

These tools are described and available on www.waternomics.eu in the report D2.1.

15/11/2015

More information about pilot activities (ongoing) is presented in the following slides

PILOT 1: THERMI MUNICIPALITY - GREECE

Thermi municipality

- Situated nearby Thessaloniki Greece
- Mostly residential area
- But there are also businesses, a technology park and large areas for agricultural use

Pilot is targeting domestic users

- 10 households identified
 - a variety of profiles
 - a variety of water usages
- We are gathering monthly consumption from them for forming a baseline
- We have acquired historical data for consumption for up to 10 years ago
- Questionnaire sent to household owners about family profile and water infrastructure to help in baselining

PILOT 1: THERMI MUNICIPALITY - GREECE

EXISTING INFRASTRUCTURE

Main water supplies

Usually outdoors Water meters from water utility Possibility to use them as a basis for additional installation rejected

In house installations

Heavy use of flexible pipes Ideal for using Mini Water Meter (MWM) sensors

15/11/2015

INSTALLATION PHASES

15/11/2015

PILOT 2: LINATE AIRPORT- MILAN (ITALY)

Milano Linate Airport

- Situated nearby Milano Center Italy
- Corporate
- there are also shops, bars and restaurants in the Terminal

Pilot is targeting corporate and decision-makers users

- A District Meter Area has been chosen
 - To conduct water and pressure metering
 - To implement a global water balance
- We have acquired historical data for consumption for up to 3 years ago
- Interviews have been implemented to understand the managers / designers and maintenance people needs
- A global metering plan has been implemented to have full control and real-time information about the water network

PILOT 2: LINATE AIRPORT- MILAN (ITALY)

METERING PLAN IMPLEMENTED

Messervey – 2nd Int'l Electronic Conference on Sensors & Applications

19

PILOT 2: LINATE AIRPORT- MILAN (ITALY)

METERING PLAN IMPLEMENTED

Touch screen displays will be installed in Linate Airport to convey information about Waternomics project, Waternomics success and involving the users in improving their water consumption behaviour through video / tips / games.

Terminal Building. This water metering area is selected to have the project interact with airport terminal staff, passengers that use the terminal, and the shops and common areas that are located within it.

NUI Galway

 one of Ireland's National Universities, founded in 1845, NUIG is ranked in the top 2% of universities in the world. NUIG has more than 17,000 students and 2,500 staff.

Pilot is targeting university users

- A large variety of users targeted Manitenance staff Operational management Students/Guests/Customers
- We are gathering water consumption from existing water meters for forming a baseline
- We have acquired historical data for consumption

Main water uses in the Engineering Building NUIG

No.	Water Supply System	Example of Usage
1	CWS - Cold Water Supply	Laboratory Work, Bathroom Sinks, Showers, Canteen, Cleaning, Top-up
2	MWS - Mains Water Supply	Potable Water at Water Fountains, Canteen, Laboratory Eye/Emergency Wash etc.
3	DHW – Domestic Hot Water supply	Bathroom Sinks, Showers, Canteen, Cleaning
4	GWS – Grey Water Supply	Bathrooms for Toilet Flushing

Key Stakeholders

- Maintenance Staff /Operators
- Operational Management
- Senior Management/Bill Payers
- Staff/Students/Customers
- External Stakeholders/Research Interests_

There were originally 11 water meters on the water system at the Engineering Building; 5 meters connected to the BMS.

As part of the WATERNOMICS Project, an additional 8 meters were installed to monitor and assess water usage by type in line with the stakeholder KPIs and the platform objectives.

The WATERNOMICS Meters are VTEC Ultrasonic Meters with point to point data connections via BBB.

PILOT 3: ENGINEERING UNIVERSITY BUILDING - GALAWAY (IRELAND)

PILOT 4: SECONDARY SCHOOL BUILDING - GALAWAY (IRELAND)

Coláiste na Coiribe secondary school under

construction ~3km from Galway City (75,000 pop.);

The 7,400 sqm school will be Ireland's largest Irish

Key Stakeholders

- Maintenance Staff/Operators
- Operational Management
- Senior Management/Bill Payers
- •Staff/Students
- •External Stakeholders (Parents)/Research Interests

Principle water uses in **Coláiste na Coiribe**

No.	Water Supply System	Example of Usage			
1	CWS - Cold Water Supply	Laboratory Work, Bathroom Sinks, Showers, Staff Kitchen, Cleaning, Rainwater Top-up, Practical Rooms			
2	MWS - Mains Water Supply	Potable Water at Water Fountains, Staff Kitchen, Home Economics & other Practical Rooms, Laboratory Eye/Emergency Wash etc.			
3	DHW – Domestic Hot Water supply	Bathroom Sinks, Showers, Canteen, Cleaning Staff Kitchen,			
4	GWS – Grey Water Supply	Bathrooms for Toilet Flushing			
Matarina Dian					

Metering Plan

14 in-line water meters will be installed at the Pilot and a BMS Display

Metering Objectives

The meters will provide data monitor and assess water usage characteristics by type in line with the identified stakeholder KPIs and the platform objectives.

NEXT STEPS

- Waternomics information
 Platform development
- Meters installation in pilot sites
- Innovative FDD meters development
- FDD methodology and method development
- Validation of the Waternomics standards based methodology

27

Conclusions

- Water management considering water as a resource is a challenge
- Finding innovative ways to address ageing water infrastructure is a challenge
- To facilitate decision makers and stakeholders at all levels into taking action to address these challenges, a standards-based framework / methodology can serve as a powerful enabler
- Water efficiency measures can make economic sense. The business model works.
- This paper has presented such a methodology which is now under validation in 4 unique pilot actions in the Waternomics Project. We'll report on that over the next two years.
- We're always available to talk about solving water problems. Much of the work is available online and we are happy to be contacted directly.

More info about WATERNOMICS: <u>www.waternomics.eu</u> <u>www.r2msolution.com</u>

Thank You

Innovation Energy Services & Sustainability Engineering ICT & Automation

Contact Information **Thomas Messervey** <u>thomas.messervey@r2msolution.com</u> <u>www.r2msolution.com</u>

Acknowledgments

The research leading to these results has received funding under the European Commission's Seventh Framework Programme from ICT grant agreement WATERNOMICS no. 619660.

15/11/2015