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Abstract: The terminal orientation of a rigid body is a classic example of a system out of
thermodynamic equilibrium and a perfect testing ground for the validity of the maximum
entropy production principle(MEPP). A freely falling body in a quiescent fluid generates
fluid flow around the body resulting in dissipative losses. Thus far, dynamical equations
have been employed in deriving the equilibrium states of such falling bodies, but they are
far too complex and become analytically intractable when inertial effects come into play. At
that stage, our only recourse is to rely on numerical techniques which can be computationally
expensive. In our past work, we have realized that the MEPP is a reliable tool to help predict
mechanical equilibrium states of free falling, highly symmetric bodies such as cylinders,
spheroids and toroidal bodies. We have been able to show that the MEPP correctly helps
choose the stable equilibrium in cases when the system is slightly out of thermodynamic
equilibrium. In the current paper, we expand our analysis to examine bodies with fewer
symmetries than previously reported, for instance, a half-cylinder. Using two-dimensional
numerical studies at Reynolds numbers substantially greater than zero, we examine the
validity of the MEPP. Does the principle still hold up when a sedimenting body is no longer
isotropic nor has three planes of symmetry? In addition, we also examine the relation
between entropy production and dynamical quantities such as drag force to find possible
qualitative relations between them.
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1. Introduction

Homogeneous bodies of revolution around an axis, a, with fore-aft symmetry, when immersed in a
quiescent liquid, orient themselves in certain ways with respect to the direction of gravity which depend
upon the shape, size, density of the rigid body and the nature of the surrounding fluid [1–3]. In our earlier
work on this subject, we analytically explained experimental observations concerning the terminal states
of symmetric rigid bodies in Newtonian and non-Newtonian fluids at very small Reynolds numbers[4,5],
Re, which is defined as Re = Ud

ν
, where U is the uniform velocity, d is the characteristic length and

ν is the kinematic viscosity. The same problem, however, becomes much more complicated as the
Reynolds number is increased. The effect of inertia is seen to give rise to several interesting Hopf-like
bifurcations from the steady orientation to periodic oscillations [6,7] and beyond. Experiments on
terminal orientation have come in two forms: (i) sedimentation, where the body falls through a quiescent
fluid under gravitational force or as (ii) a horizontal setup with the body being hinged at the center of a
flow tank. In this latter case, the body is fixed in space, though allowed to rotate, while the fluid moves
past it. Both scenarios are qualitatively similar and will not be distinguished in this work.
Unsteady problems in fluid-solid interaction, in recent years, have seen a revival in interest in the
fluid mechanics community. The immense mathematical complexity of the problem and the advent of
fast computing has resulted in more problems being solved numerically, where analytical arguments
are no longer possible. While these methods effectively capture the dynamical process, they are
computationally expensive and often difficult to implement. The fact that fluids are inherent dissipative
systems and the events described are out of equilibrium, allows us to apply thermodynamic tools towards
these problems. Thermodynamics can reveal the underlying energetics of the system and provide more
fundamental explanations for problems involving pattern formation/selection.

2. The Maximum Entropy Production Principle

Optimality principles have long been popular in physics and enjoyed much successes in various
branches of theoretical physics. The principle attributed to Ziegler, essentially states that complex
systems which are out of thermodynamic equilibrium settle to a steady state corresponding to maximum
entropy production[8,9]. A more popularly known version of the extremum principle is due to
Prigogine[10] and Onsager [11] which holds in the near equilibrium regime and states that steady states
correspond to one of minimum entropy production. A parallel statistical mechanics approach due to
Shannon and Jaynes based upon the Boltzmann’s and Gibbs’ interpretations of entropy has yielded
noteworthy results and has been shown to be related to Ziegler’s principle[9]. A thorough discussion of
this subject is presented in the review by Martyushev and Seleznev[8] and it is also shown here that the
MEP principle and Prigogine’s principle are not contradictory; the former, in fact, subsumes the latter
and can therefore be considered the more general principle. While the MEPP has been successfully
applied in different contexts [8], there have also been some objections to it (see [12], for instance).
Supporters of the MEP however, argue [13] that counter arguments provided are outside the range of
applicability of the MEPP. Since fluids are dissipative by nature, they are apt systems for application
of such a theory. In fluid mechanics, the MEP argument has been used very sparsely and mostly to
understand the transition from laminar to turbulent with varying degrees of success[9,14,15]. Based on
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our previous work [16–18], we feel that the MEP promises to be a valuable pattern selection principle for
the fluid structure interaction problems and gives us insight into the possible dynamics of the complex
coupled system which has so far eluded us.

3. Theoretical Framework

In our earlier work we have shown that [16] the expression for entropy production, for the case of a
sedimenting body in a viscous fluid, is of the functional form

P =
1

T0

∫
Ω

T : D− me

T0

g ·U =
2µ

T0

∫
Ω

D : D− me

T0

g ·U (1)

where T0 is the constant ambient temperature, T is the Cauchy stress tensor, u is the fluid velocity field
and D is the symmetric part of the velocity gradient D = 1

2
(∇u + ∇Tu). In the above equation, we

decompose the stress tensor in general into TN = −pI+2µD, p being the isotropic pressure and µ is the
viscous coefficient. Also, me = (ρb − ρf )|B| is the effective mass, where |B| represents the volume of
the body. For the case of hinged body in a horizontal flow, the gravitational term is neglected which does
not contribute to the extrema of entropy production even in the case of sedimentation[16]. The equation
(1) is not merely a mathematical construct but based on physically sound reasoning[19] and consistent
with previous literature.

3.1. Orientation of an ellipse/spheroid in a flow at slow speeds

In order to put equation (1) to the test, we consider a rigid body moving in a fluid, in its steady state.
In our earlier work we have shown that for the problem of sedimentation of a rigid body of any shape
in a Newtonian fluid at Re = 0, P = 0. This is consistent with the balance of linear momentum and
angular momentum equations[20]. The zero entropy production case is therefore identified with the
creeping flow regime and the vanishing of P indicates that sedimentation, if slow enough, is a reversible
process[14]. Therefore, in the case of very slow fall speeds (or high viscosities), the sedimenting body
can fall with any orientation which is consistent with the observations of Leal [3].
If we restrict the geometry of the body to one possessing 3 planes of reflection symmetry and one axis of
rotational symmetry, such as in a prolate spheroid, then for non-zero and small Re when inertial effects
become prominent, P > 0 and we can write[16]

T0P = U2(K11 cosφ
2 +K22 sinφ

2)−meg ·U. (2)

where φ is the angle of orientation of the spheroid and K11, K22 are positive coefficients. The derivative
of P with respect to φ gives us

T0
∂P
∂φ

= U2(K22 −K11) sin 2φ (3)

yielding two possible extrema for P , namely, φ = 0 and φ = π/2 [16,17]. Numerical computations for
prolate spheroids indicate thatK22 > K11 [16], indicating that P has a maximum at φ = π/2. This angle
is known to coincide with the experimentally observed stable terminal state of the spheroid. This result
is true for a variety of other bodies which belong to the same symmetry class, such as oblate spheroids,
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Figure 1. Numerical simulation of velocity field vectors past a half-cylinder oriented at 90◦

with respect to the uniform flow direction. The color scheme represents the magnitude of the
flow.

cylinders and torus [16,17]. The MEP principle therefore appears to serve as a selection principle to
find the stable terminal configuration. Previous analytical work was performed for Re << 1 and the
analysis holds in the near-creeping flow regime. We can summarize the results of our analysis in terms
of the following proposition:

Proposition 1. Bodies possessing isotropic symmetry or containing three planes of reflection symmetry
with one axis of rotational symmetry, align themselves such as their long axis is perpendicular to the
uniform flow direction, in their terminal stable states. This configuration coincides with the (i) maximum
entropy production, (ii) maximum total drag, (iii) maximum pressure drag and (iv) minimum viscous
drag.

3.2. Impact of body shape and flow speed

We have been working to test the validity of these principles for bodies with varying symmetry classes.
In our recent work, we have considered the case of a half-cylinder in a horizontal flow(see figure 1). This
body possesses lesser symmetry than those previously studied. In order to test the validity of the MEPP
on this body, we make two observations: (i) the flow past such a body cannot be analytically determined
and must be ascertained by numerical computations; (ii) it is easier and qualitatively the same (as the
sedimentation case) to consider the problem with the body clamped in different orientations and have
the fluid move past the body. With these in mind we used the software, Comsol[21] to perform a two
dimensional numerical simulation of flow past the half-cylinder, placed at the center of the domain (see
figure 1). The domain height and length in the simulation are 0.18m and 0.5m, respectively. The walls
of the domain are the upper and lower sides, and no-slip boundary conditions have been imposed. The
front end of the domain is the channel inlet, at which we prescribe a uniform inflow velocity, and the
back end of the domain is the channel outlet, at which zero pressure, no viscous stresses are prescribed.
The half-cylinder, has dimension of 0.02m (semi-major axis) and 0.0078m (semi-minor axis). We fixed
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Figure 2. Panel (a) shows the entropy production, drag force, viscous drag and pressure drag
as a function of orientation angles for a half-cylinder at the Re = 1.20. Figure (b) shows the
entropy production versus flow speed for the case of θ = 90◦ and θ = 270◦. The boundary
between phase 1 and 2(U = 0.08m/s and Re = 1.6) is determined based on the observation
switching of maxima in our data.

(a) (b)

the half-cylinder at its center exactly 0.15m away from the channel inlet and at 0.09m from the bottom
to eliminate numerical inlet effects. Physics-controlled mesh was selected consisting of 7776 elements.
We conduct a parametric sweep with the half-cylinder rotating counterclockwise at different velocities
in the viscous fluid to obtain the results being discussed. The mesh density and parameters of the code
have been tested for numerical convergence [22].

A similar numerical computation for the entropy production for the flow past an ellipse was also
performed for flow speeds ranging between 0.02m/s - 0.5m/s which correspond to Reynolds numbers,
0.4 ≤ Re ≤ 10. In the computation of the Re, d was chosen to be twice the major axis and ν was
set to be 10−3m2s/. The results of the computation are consistent with proposition 1. The calculations
for the half-cylinder are seen to be more complex than that of an ellipse (or spheroid). Let us define
a set S which contains the maxima of P . Therefore, in the case of the half-cylinder, S contains two
states corresponding to two local maxima, at 90◦ and 270◦ (see figure 2(a)), the former of which is the
experimentally observed stable configuration. The total drag force and pressure drag, also reveal extrema
at these angles. How, then, do we choose the stable state from set S? Proposition 1 does not help since
the ellipse possesses only one extremum. To formulate the appropriate, more general selection principle,
we refer to the figure 2(b) which shows the values of the entropy production with respect to the flow speed
for the case of 90◦ and 270◦ orientation. In Phase 1, corresponding to Re < 1.6, the stable state appears
to correspond to max S (where the difference between the two entropy production extrema is extremely
small), while in Phase 2, the stable state switches to min S. There is no contradiction with Proposition 1
where set S contains only one element. As the flow speed increases and pushes the system farther away
from thermodynamic equilibrium, the selection principle appears to reveal more complexity.

Proposition 2. In the near equilibrium state, corresponding to 0 < Re ≤ 1.6, bodies possessing one
axis of reflection symmetry, such as half-cylinders, with sufficiently large aspect ratio, align themselves
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such that their flat sides become perpendicular to the uniform flow direction. These bodies possess
two equilibria corresponding to orientation angles 90◦ and 270◦, with the former corresponding to the
terminal stable state. This stable configuration coincides with (i) the maximum entropy production; (ii)
maximum total drag;(iii) min-max of pressure drag and (iv) max-min of viscous drag, over all angles.
When the system is sufficiently far from thermodynamic equilibrium, corresponding to flow speeds 1.6 <
Re ≤ 10, the half-cylinders, with sufficiently large aspect ratio, continue to align themselves with θ =

90◦ in the stable state. This stable configuration coincides with (i) the min-max of entropy production;
(ii) min-max total drag;(iii) min-max of pressure drag and (iv) max-min of viscous drag.

Note that the upper limit of Re in Phase 2 is limited by the range of flow speeds explored studied here
and is not an indication of the limits imposed by thermodynamic effects.

4. Conclusions

In all of the cases explored thus far[16,17,19], the MEPP holds for sufficiently small flows. However,
our study indicates that geometric effects are significant and allow us to test the validity of MEPP as a
selection principle. What makes the case of the half cylinder particularly challenging is that an analytical
expression for the flow field is not available. We therefore perform numerical simulations to solve for the
velocity field. The advantage of this approach, however, is that velocity field is also no longer restricted
to the linear regime but can be used to study cases where inertial effects of the fluid are significant. Our
simulations consider Reynolds number in the range 0.4 < Re < 10, advancing our analysis, possibly
into a regime which is beyond the near-equilibrium regime. Also to be noted is that the general case
of the half-cylinder geometry is a complex problem and the results also depend on the aspect ratio of
the body, i.e. the ratio of major axis to the semi-minor axis (denoted γ). The current study only reports
the case γ = 5. Analysis for γ = 4 displays similar results. Additional cases, especially for smaller
γ will be conducted in the future. Our preliminary work on the half-cylinder indicates that MEPP is
capable of capturing the equilibrium states of a body in a flow and is a sufficient requirement in the
near-equilibrium state (0 < Re ≤ 1.6). However, when Re > 1.6, the MEPP needs to be bolstered by
additional constraints to serve as a valid selection principle. Propositions 2 reveals that the pressure or
viscous drag are more uniform predictors and the min-max of pressure drag or max-min of viscous drag
can also work as a selection principle for bodies with one plane of symmetry. Entropy production and
total drag both dislpay similar extrema and switching properties. The shift in the entropy production
(figure 2(b)) beyond Re ≈ 2 coincides with the critical regime where flow separation is thought to
occur and wake vortices become more prominent [23] in the flow past a cylinder. Interestingly, the same
critical Re also shows up in our thermodynamic analysis of flow past a half-cylinder. This change is also
remarkably similar to the results by Hubler et al. [24] on the entropy production during the self-assembly
of nanotubes. They also observe a switching from a maximum to a minimum entropy production with
increasing dissipative effects. The fluid-solid interaction problem discussed here serves as a perfect
testing ground for the MEPP. A more thorough investigation of these cases and for additional symmetry
classes and higher Re are currently being pursued.
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