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Abstract: The application of entropy in finance can be regarded as the extension of the 

information entropy and the probability entropy. It can be an important tool in various 

financial methods such as measure of risk, portfolio selection, option pricing and asset 

pricing. A typical example for the field of option pricing is the Entropy Pricing Theory 

(EPT) introduced by Les Gulko [1996]. The Black-Scholes model [1973] exhibits the idea 

of no arbitrage which implies the existence of universal risk-neutral probabilities but 

unfortunately it does not guarantees the uniqueness of the risk-neutral probabilities. In a 

second step the parameterization of these risk-neutral probabilities needs a frame of 

stochastic calculus and to be more specific for example the Black and Scholes frame is 

controlled by Geometric Brownian Motion (GBM). This implies the existence of risk-

neutral probabilities in the field of option pricing and their uniqueness is vital. The 

Shannon entropy can be used in particular manners to evaluate entropy of probability 

density distribution around some points but in the case of specific events for example 

deviation from mean and any sudden news for stock returns up (down), needs additional 

information and this concept of entropy can be generalized. If we want to compare entropy 

of two distributions by considering the two events i.e. deviation from mean and sudden 

news then Shannon entropy [1964] assumes implicit certain exchange that occurs as a 

compromise between contributions from the tail and main mass of the distribution. This is 

important now to control this trade-off explicitly. In order to solve this problem the use of 

entropy measures that depend on powers of probability for example Tsallis [1988], 

Kaniadakis [2001], Ubriaco [2009], Shafee [2007] and  Rényi [1961] provide such control. 

In this article we use entropy measures depend on the powers of the probability. We 
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propose some entropy maximization problems in order to obtain the risk neutral densities. 

We present also the European call and put in this frame work. 

Keywords: Entropy Measures; Risk Neutral Densities; Black-Scholes Option Pricing 

PACS Codes: 89.65.-s Social and economic systems 

 

1. Introduction 

The application of entropy in Finance can be regarded as the extension of both information entropy 

and probability entropy. Since last two decades the application of entropy measures in finance has 

become a very important tool for the methods of portfolio selection and asset pricing. The famous 

Black-Scholes model [1] assumes the condition of no arbitrage which implies the universe of risk-

neutral probabilities. The uniqueness of these risk-neutral probabilities is very crucial. The stock price 

process is controlled by Geometric Brownian Motion (GBM) in Black and Scholes model and in this 

framework stochastic calculus is vital. The Entropy Pricing Theory (EPT) was introduced by Les 

Gulko as an alternative method for the construction of risk-neutral probabilities without relying on 

stochastic calculus [8,9,10]. The Principle of Maximum Entropy (MEP) was used to estimate the 

distribution of an asset from a set of option prices [13]. Beside this work the maximum entropy 

principle was used to retrieve the risk-neutral density of future stock risks or other asset risks [21]. The 

Renyi entropy [20] generalizes the frequently used Shannon entropy [22] and it has been used for 

option price calibration [6]. Some more extensions for the use of entropy for the case of random 

homogeneous systems with complete connections can be found in [12]. Recently Preda et al. used 

Tsallis and Kaniadakis entropy measures for the case of semi-Markov regime switching interest rate 

models [17]. Preda et al. have also introduced the new classes of Lorenz curves by maximizing Tsallis 

entropy under mean and Gini’s equality and inequality constraints [18]. For maximum entropy 

distribution of asset returns, application of entropy in finance, entropy maximization problems, and 

others can be found in [3,7,13,15,16,26].  

In this article we use three different types of entropy measures to find risk-neutral densities using 

the framework of EPT for stock options [20,23,24]. In Section 2 we present the introduction of EPT 

and formulation of our problems, and then we further develop the structure to obtain our new results. 

We discuss the approach of Lambert function to get risk-neutral density of stock options then we 

present a new approach. We introduce the weighted entropy maximization problems and the expected 

utility-weighted entropy (EU-WE) framework. We extend our results for pricing European call and put 

options. Section 3 concludes our results. 

2. Results and Discussion 

We use the concept of EPT [8,9,10] .The term market belief is vital in option pricing and the current 

price of any risky asset indicates this belief. The future picture of the market up (down) reflects a state 

of maximum possible uncertainty; therefore market belief for the future performance of an efficient 
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price is characterized by maximum uncertainty. Consider a risky asset on time interval[0,T] . Let TY be 

asset price process of ST at future time T , G as state space, a subset of real line ,  g(S )TR the 

probability densities on , ( )Tf SΡ efficient market belief and ( )H g the index of market uncertainty 

about TY . The ( )H g is defined on the set of beliefs ( )Tg S therefore the efficient market belief 

( )Tf S maximizes ( )H g . 

We can determine ( )Tf S given ( )H g with some relevant information about current price of S . The 

index of the market uncertainty about TY as a Shannon entropy can be written as: 

 ( )( ) ln  gg
TH g E Y = −    (1) 

In the above equation ( )H g is a functional defined on ( )Tg S , ( )Tf S which maximize ( )H g is called 

the entropy of random variable TY and used to measure the degree of uncertainty of ( )Tg S . The 

maximum entropy characterizes the market beliefs regardless of the subjective risk preferences and it 

is useful to find the risk neutral beliefs in incomplete arbitrage free markets. The maximum entropy 
market belief ( )Tf S  as a solution to the maximum entropy problem can be written as follows: 

 

 ( ){ }arg  max ,f H g g G= ∈  (2) 

2.1. Shafee Entropy Measure and Risk Neutral Densities 

In 2007 non additive entropy was proposed [23]. It gives the general form that is non-extensive like 

Tsallis, but is linearly dependent on component entropies. The mathematical description of the new 

entropy functions was in discrete case and for our problem we consider the continuous cases as an 

analogue of the discrete case:  

( ) ( ) ( )1
ln  g ,  0, 1

qg
q T TH g E g Y Y q q

− = − > ≠   (3)

The Lambert function has become an important tool since its beginning with Lambert-1768 and 

Euler in 1779. The Lambert function W is a multi-valued complex function which is defined as the 
solution of the equation where ( ) ( )W zW z e z= , z is a complex number. If z is a real number such that, 

1z e−≥ − , then ( )W z  becomes a real function with two possible real branches taking values in 

( ], 1−∞ − and [ )1,− ∞ . [13]. 

Lemma 2.2. [13] Let a, b and c be any fixed complex numbers. Then solution of equation zz ab c+ =  

with z C∈  is, ( ) ( )( )1
log

log
cz c W ab b

b
= − , where W is Lambert function and C denotes complex 

numbers. 

Preda and Sheraz have recently studied Shafee entropy maximization problems for the case of risk 

neutral densities. They have obtained solutions using the Lambert function and a new approach for 

various cases such as Expected Utility-Weighted Shafee Entropy (EU-WSE) frame work [19].  

Theorem 2.1. Consider the following entropy maximization problem: 

( ) ( ) ( )1 max ln  gg q
T T TE u Y g Y Y− −    

Subjet to 
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{ }

( ) ( )
0 1                             C-1

, 1, ,     C-2

T

i

g
Y

g
T T i

E I

E u Y Y a i nϕ

>
  = 
  = = 

 

where ( ) 0, : T iu S R Rϕ> →  and 1  ,... na a  are given real values. The solution of the problem is 

( )

( )
( ) ( ) ( )

( )

( ) ( ) ( )

1

1

1

1

1
1

exp

g .

1

qn

i T i T
i

T
T

T n

i T i T
i

u S S q
q

qu S W
qu S q

S

u S S q

α β ϕ

α β ϕ

−

=

=

   
+ −   

  −     −         
   =  

  + −  
  

 
 
  




 

where 1, ,... nα β β  are Langrage multipliers, and W is the Lambert function. 

2.2. Ubriaco Entropy Measure 

Ubriaco (2009) proposed a new entropy measure based on fractional calculus and showed this new 

entropy has the same properties as Shannon entropy except additivity. We consider the analogue of the 

discrete case of non additive entropy defined by [24]. We suppose that all expectations are also well 

defined and underlying optimization problems admit solutions for some continuous cases. More details 

in [2,5,15]. We may write for the discrete case as: 

1

1
( ) ln

dn

i
ii

H p p
p=

  
=      
   (4)  

where ( )
1

( )
n

i i
i

H p H p
=

=  is positive and by using condition 0
i

H

p

∂ =
∂

and ( ) 1
ln

d

i i i
i

H p p
p

  
=      

. 

Also ( )i iH p has maximum at d
ip e−=  and with a second derivative at this point, 

2
1

2
i d d

i

H
d e

p
−∂

= −
∂

. 

Similarly in the continuous case if ( )Tg S is the density function we may write as follows: 

( ) ( )
1

   (g ) ln ,   0 1

d
g

T
T

H S E g
g S

  
= < ≤      

  (5)  

We obtain the Shannon entropy for 1.d =  

Lemma 2.1. ( ) ( )1
ln ,0 1, 0,  : 0, 0,

d
dx x d e

x
ψ ψ −  ′= < ≤ > → ∞ 

 
 then ψ ′ the first derivative of ψ  

admits inverse. 
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ψ ′ is strictly increasing therefore the proof of Lemma 2.1 is obvious.  

Theorem 2.2. Consider the following maximum entropy problem for the case of Ubriaco entropy 

measure: 

( ) ( )
1

max ln

d
g

T
H g E

g Y

    =          

 

Subject to 

{ }

[ ]
( )

0

0

0 0

1                         C-1

                        C-2              

=            C-3

T

g
Y

g rT
T

g rT
T

E I

E Y S e

E Y K C e

>

+

  =  

=

 −  

 

where 0K is the strike price, T is time to expiry and r is the risk free interest rate. Then the risk neutral 

density ( )Tg S is given by: 

( ) ( ) ( )( )1
1 2 0T T Tg S S S Kψ λ β β +−′= + + −  

where 1 2,  and λ β β  are Lagrange multipliers and need to be determined by C-1,C-2 and C-3. 

Proof. We can proof the above result by using the calculus of variations for optimization of 

functionals (see Luenberger -1969, Borwein -2003). The corresponding Lagrangian can be written as: 

( ) ( ) { }( ) [ ]( ) ( )( )1 1 0 2 0 00

1
, ln 1  

T

d

g g g rT g rT
T TY

T

L g E E I E Y S e E S K C e
g Y

λ λ β β +
>

      = − − − − − −          

 

Then g  has to satisfy the relation: 

( ) ( ) ( )
1

1 1 2 0

1 1
ln ln - 0

d d

T T
T T

d S S K
g S g S

λ β β
−

+      
− − − − =                  

 

Using Lemma 2.1.1 we can write the above equation: 

( ) ( ) ( )( )
1

1 1
ln ln

d d

T
T T

d g S
g S g S

ψ
−

      
′− =                  

 

Therefore, 

i.e., 
( )( ) ( )

( ) ( ) ( )( )
1 1 2 0

1
1 1 2 0

                                 

                                   

T T T

T T T

g S S S K

g S S S K

ψ λ β β

ψ λ β β

+

+−

′ = + + −

′= + + −
 

The proof is complete.  
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We can extend the previous result of theorem 2.2 for the case of weighted entropy. The weighted 

entropy was first defined by Guiasu [11], considering the two basic concepts of objective probability 
and subjective utility. If ( ) 0Tu S >  then solution of the weighted Ubriaco entropy maximization 

problem subject to the constraints C-1,C-2 and C-3 is given by: 

( )
( ) ( )( )

( )

1
1 1 2 0T T

T
T

S S K
g S

u S

ψ λ β β +−′ + + −
=  

2.3. Rényi Entropy Measure 

The Rényi entropy is named after Alfréd Rényi and in the field of information theory the Rényi 

entropy generalizes, the Shannon entropy. The relative entropy minimization has been used 

extensively in the past for the calibration of the financial models. In financial modeling most of the 

entropy based calibration methods depend on the use of the logarithmic entropy measure of Shannon. 

A one parameter family of entropies generalizing the logarithmic entropy measure of Shannon and 

Wiener was considered by Rényi [20,22]. In 2007 Dorje et al. [6] have studied the case of Rényi 

entropy for calibration of option pricing and explained a piece of information that one drawback in the 

use of logarithmic entropy measures is that if the only source of information used to maximize entropy 

are the market prices for the vanilla option, then the resulting density function is necessarily of 

exponential form. The use of Rényi entropy is the more general case for the calibration of risk neutral 

price distribution. 

The Rényi entropy of order r  where 0r ≥ , 1r ≠  is defined as: 

    ( ) ( )
1

1
log

1

n
r

r i
i

H X g X
r =

 
=   −  

   (6)  

where X  is a discrete random variable and ( )Prip X i= =  for 1,2,...,i n=  and 0r →  the Rényi 

entropy is just the logarithm of the size of the support of X and for 1r →  equals to Shannon's entropy. 

In the case of continuous random variable we may write Rényi entropy as: 

    ( ) ( )( )11
log

1
g r

rH X E g X
r

−=
−

 (7) 

We extend our results for the risk-neutral densities in the case of Rényi entropy. In this Section we 

present our main results for Rényi entropy. Also we present pricing of European call and put options. 

We suppose that all expectations are also well defined and underlying optimization problems admit 

solutions for some continuous cases, where gE  is expectation relative to probability density ( )Tg S  

and TS  is asset price at timeT . 

Theorem 2.3. Consider the Rényi entropy maximization problem: 

( ) ( )( )11
max ln

1
g r

r TH g E g Y
r

−=
−

 

subject to 
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{ }

( )
1  

                            1                 C-1

                      , 1, ,       C-2

 , :   ,...,    .        

T

i

g
Y

g
T i

i n

E I

E Y c i n

where R and c c are given real values is the state space of the prices

ϕ

ϕ

−∞< <∞
  = 

  = = 
Λ → Λ

( )
( )( )

( )( )

1

1

1

1

1

1

1

.

       :

1
1

               g

1
1

 ,...,       -1  - 2.

n r

i i i T
i

T

n r

i i i T T
i

n

The solution of the problem is given by

r
c S

r
S

r
c S dS

r

where are to be obtained by C and C

β ϕ

β ϕ

β β

−

=

+∞ −

=−∞

  −− −  
   =
  −− −  
   





 

Proof. We can proof above result by using calculus of variations for optimization of functionals (see 

Luenberger-1969 and Borwein-2003, Zellner and Highfield-1988). Therefore we can write the 

Lagrangian as: 

( )( ) { }( ) ( )( )1

1

1
ln 1  

1 T

n
g r g g

T i i T iY
i

L E g Y E I E Y c
r

λ β ϕ−
−∞< <∞

=

   = − − − −  −   

Therefore we have: 

( )
( )( ) ( )

1

1
1

0
1

nr
T

i i Tg r
iT

g Sr
S

r E g Y
λ β ϕ

−

−
=

− − =
−   

where λ is the Lagrange multiplier and taking expectation of last equation we get:  

( )( )
( )( ) { }( ) ( )( )

1

1
1

0
1 T

g r nT g g
i i TYg r

iT

E g Sr
E I E Y

r E g Y
λ β ϕ

−

−∞< <∞−
=

 − − =  −   

Using given conditions we have: 

1 1

0
1 1

n n

i i i i
i i

r r
c c

r r
λ β β λ

= =
− − = ⇔ − =

− −   

Now for value of λ : 

( )( ) ( )
1

1
1

1 1

1

1

n n r
g r

T i i i i T
i i

r r
E g Y c S

r r
β β ϕ

−−

= =

 − − −  − 
   

Now we have: 

( )
( )( ) ( )

1

1
1

0
1

nr
T

i i Tg r
iT

g Sr
S

r E g Y
λ β ϕ

−

−
=

− − =
−   

( )( ) ( ) ( )1 1

1

1 n
g r r

T i i T T
i

r
E g Y S g S

r
λ β ϕ− −

=

 − + =  
 

  
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( ) ( )( )( ) ( )

1
1 1

1 1

1 1

1 1
1

n n r
g r r

T T i i i i T
i i

r r
g S E g S c S

r r
β β ϕ

−
− −

= =

  − − = − −     
   

Now by using C-1 we get: 

( )( )( ) ( )( )
1

1 1
1 1

1

1 1
1 1

n r
g r r

T i i i T T
i

r r
E g Y c S dS

r r
β ϕ

−+∞− −
−∞

=

  − − = − −     
  

Therefore, 

( ) ( )( )

11
1

1
1

1

1
1

n r
rr

T T i i i T T
i

r
g S dS c S dS

r
β ϕ

−

−+∞ +∞−
−∞ −∞

=

 
   −    = − −           
 

   

Thus we obtain: 

( )
( )( )

( )( )

1

1

1

1

1

1

1
1

 g

1
1

n r

i i i T
i

T

n r

i i i T T
i

r
c S

r
S

r
c S dS

r

β ϕ

β ϕ

−

=

+∞ −

=−∞

  −− −  
   =
  −− −  
   





 

Theorem 2.4. Consider the weighted- Rényi entropy maximization problem 

( ) ( ) ( )( )11
max ln

1
g r

r T TH g E u Y g Y
r

−=
−

 

Subject to 

{ }

( )

1              C-1

, 1, ,     C-2

T

i

g
Y

g
T i

E I

E Y c i nϕ

−∞< <∞
  = 
  = = 

 

( ) ( ) ( )( )

( )

1 1     = , =1  =1 , :   ,...,    .

                   

                 g

g
i T T T i n

T

In particular S u S c then E u S R and c c are given real values

is the state space of prices and u is a weighted function then solution of the problem is

S

ϕ ϕ Λ →

Λ

( )( )
( )

( )( )
( )

1

1

1

1

1

1

1

1
1

1
1

 ,...,       -1  - 2.

n r

i i i T
i

T

n r

i i i T
i

T
T

n

r
c S

r

u S

r
c S

r
dS

u S

where are to be obtained by C and C

β ϕ

β ϕ

β β

−

=

−

+∞
=

−∞

  −− −  
  
 
 
  =
  −− −  
  
 
 
  





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The proof of theorem 2.4 is quite similar to the proof of theorem 2.3. 

2.3.1. Rényi Entropy Measure and EU-WE Framework  

Casquilho et al. [4] used EU-WE i.e. expected utility- weighted entropy framework under a 1-

parameter generalization of Shannon formula focused on an ecological and economic application at the 

landscape level. Following this approach the EU-WE framework, if u is a positive utility application 

on G . In the next theorem we present a new result for the risk-neutral density using the frame of 

expected utility-weighted entropy for the case of Rényi-entropy maximization problem. 

Theorem 2.5 Consider the case of Rényi-entropy maximization problem:  

( ) ( )( ) ( ) ( )( ) ( )( )

( )

( )

1

1

1

    1  2   2.4.

1
         max ln ln

1

1 1 1

1

            g

       :

g g r g
r T T T T

n

i i T
i

n

i
i

T

subject to the constraints C and C of theorem Then sol

H g E

ution of the prob

u Y E u Y g Y E u Y

lem is giv
r

S
r r

r r

n b

r

e y

S

λ β ϕ

β λ

−

=

=

= + −
−

+
− −− +

 
+

−

+ 
 =

−

 ( )

( )

( )

1

1

1

1

1

1

1

1 1 1

1

 ,...,     .

r

T

n r

i i T
i

Tn
T

i
i

n

u S

S
r r

dS
r r u S

r

where are to be obtained

λ β ϕ

β λ

β β

−

−

+∞
=

−∞

=

  
  
  
 
 
  

  
+  

− −  − +  
 + + 
   








 

Proof. We can write the Lagrangian of the given problem: 

( )( ) ( ) ( )( ) ( )( ) { }( )
( )( )

1

1

1
       ln ln 1

1

              

T

g g r g g
T T T T Y

n
g

i i T i
i

L E u Y E u Y g Y E u Y E I
r

E Y c

λ

β ϕ

−
−∞< <∞

=

 = + − − − −

 − − 
 

i.e., 

( ) ( ) ( )
( )( ) ( )( )

( )
( )( ) ( )

( )( ) ( )( ) ( )
( )( ) ( )

( )( )
( )( ) { }( )( ) ( )( )( )

1

1
1

1

1
1

1
0

1 1

1
0

1 1

  

T

nr
T T T

T i i Tgg r
T iT T

g r g n
T T Tg g g

T i i TYg r g
T T T i

u S g S u Sr
u S S

r r E u YE u Y g Y

E u Y g Y E u Yr
E u Y E I E Y

r rE u Y g Y E u Y

λ β ϕ

λ β ϕ

−

−
=

−

−∞< <∞−
=

+ − − − =
− −

+ − − − =
− −





Now we get: 

( )( ) ( ) ( ) ( )( )
1 1

1 0 1
n n

g g
T i i T i i T T

i i

E u Y S S E u Yλ β ϕ λ β ϕ
= =

− − − = ⇔ + + =   
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Using the following equation for the value of λ : 

( ) ( ) ( )
( )( ) ( )( )

( )
( )( ) ( )

1

1
1

1
  0

1 1

nr
T T T

T i i Tgg r
T iT T

u S g S u Sr
u S S

r r E u YE u Y g Y
λ β ϕ

−

−
=

+ − − − =
− −   

Let us put ( ) ( )
1

n

i i T T
i

S Sλ β ϕ γ
=

+ =  then we get: 

( )
( ) ( )( )

( )
( )

( ) ( )( ) ( ) ( )

( ) ( ) ( )( ) ( )( )
( )
( )

( ) ( ) ( )( )( ) ( )( )
( )
( )

1
1

1 1

1
1

1
1 1

1

1 1

1 1 1

1

1 1 1

1

g r
T T Tr

T T T
T T

Tr g r
T T T

TT

rTg r r
T T T

TT

E u Y g Y u Sr
g S u S S

r u S r S

Sr r
g S E u Y g Y

r r u Sr S

Sr r
g S E u Y g Y

r r u Sr S

γ
γ

γ
γ

γ
γ

−
−

− −

−− −

 −= − + 
− +  

 − −= − + 
+  

 − −= − + 
+  

 

Using C-1 we get: 

( ) ( )( )( ) ( )( )
( )
( )

1
1

1
1 1 1 1 1

1 .
1

rTg r r
T T T

TT

Sr r
E u Y g Y dS

r r u Sr S

γ
γ

−+∞− −
−∞

 − −= − + 
+  

  

i.e., 

( ) ( )( )( ) ( )( )
( )
( )

1
1

1
1 1 1 1 1

1

rTg r r
T T T

TT

Sr r
E u Y g Y dS

r r u Sr S

γ
γ

−+∞− −
−∞

 
  − −= − +  

+   
  

  

And we have obtained the result therefore the proof is complete.  

2.3.2. Pricing European Call and Put Options 

In this section we use the new risk neutral density function ( )Tg S  obtained in the case of Rényi 

entropy, to evaluate the European call and put options on a dividend protected stocks. At time to 
expiryT  , a call option pays ( )max 0, TS K−  and a put option pays ( )max 0, TK S−  , K  is the strike 

price. We use the linear pricing rule and the risk neutral density ( )Tg S . Then the price of European 

Call can be written as follows: 
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( )( )
( ) ( )

               max 0,S

                       =     

g
T

T T T T TK K

Call PE K

K g S S dS PK g S dS
∞ ∞

= −

− 
 

which is equivalent to: 

( ) ( )

( ) ( )( ) ( )

1 0 0

1 0

               1

                 = 0  

K K
T T T T T

K
T T

Call P c g S S dS PK g S dS

Call Pc PKG K PK PK g K P G S dS

   = − − −   
   

− − + − +

 


 

We can use various kinds of risk neutral densities in the above given equation of Call to 
obtain ( )0g . As we have presented in the some new results for the risk neutral densities, we can easily 

obtain the value of ( )0g . Similarly we can write value of the Put option: 

( )( )
( )( )

( ) ( )
0

0

                     max 0, S

                           =

                           =

g
T

K
T T T

K
T T T

Put PE K

P g S K S dS

PKG K P g S S dS

= −

−

−





 

which is equivalent to: 

( )
0

                     
K

T TPut P G S dS=   

4. Conclusions  

In this article we have presented some approaches to obtain risk-neutral densities using three 

different types of entropy measures. We have used the famous entropy pricing theory of stock options. 

We have studied to price European call and put option using the underlying framework. The problem 

of extracting implied volatilities from market price of the options has always attained the concentration 

of researchers in option pricing but this is single statistic which can be extracted and depends on the 

option pricing model. The problem of getting risk-neutral density implies a comprehensive package 

without specifying any model has become crucial and entropy pricing theory is an alternative structure 

to solve such problems. The results are obtained by using the entropy measures that depend on the 

powers of the probability.  
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